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Abstract
This study proposes a modification to the objective function of the support vector machine for the linearly

non-separable case of a binary classifier yi ∈ {−1, 1}. The modification takes into account the position of each
data item xi from its corresponding class centroid. The resulting optimization function involves the centroid
mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of
hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields
the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-
life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than
the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations
among predictors as well as among extreme values.

Keywords: support vector machine, quadratic cost function, misclassification rate, linearly non-
separable, centroid mean vector

1. Introduction

Support vector machine (SVM) classifiers have a sustainable performance on regression and classi-
fication, especially for high-dimensional features extraction (Izenman, 2008). These classifiers use
support vectors, which provide efficient information, in constructing a linear hyperplane when data
sets are completely separable. However, in the case of non-separable data, the classifier becomes
more difficult and complex to build. Distinct types of SVM’s algorithms deal with two situations of
non-separable data. Firstly, when the data are partially overlapped but can be separated linearly ,and
secondly, when the data of one class are mixed or surrounded due to the differences in classes’ homo-
geneities. As a consequence of this data structure, linear separable hyperplane is impossible or at least
works poorly under classification, even when the kernel trick that uses a specific transformation func-
tion to convert the non-linear separable data to linearly separable is applied (Izenman, 2008). Despite
these differences of data distributions, the SVM classifier still utilizes the same quadratic program-
ming (QP) objective function regardless of the situation to solve constrained optimization problems
(Izenman, 2008; Jiang et al., 2014). Consequently, this leads to higher misclassification rates.

Our target was to modify the objective function of the classical SVM so as to minimize the mis-
classification rate. In addition, we investigated its properties in terms of consistency and convergence
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(Steinwart, 2001, 2002; Zhang, 2004; Vert et al., 2006). To minimize the criteria of the misclassified
rate and outliers, some studies have introduced a marginal loss for the data by computing the loca-
tion of the data point and its corresponding marginal hyperplane; and thereby attempted to reduce the
misclassification rate (Bühlmann and Yu, 2003). To deal with the outlier sensitivity, the ramp loss
classification approach was discussed during the proceedings of the 23rd international conference on
machine learning (Brooks, 2011; Shen et al., 2003; Collobert et al., 2006). They attempted to solve
the optimization problem with ramp loss so as to obtain solutions that did not guarantee to global
minima. The idea of ramp loss was to fix the misclassified points, especially for the outliers; and
thereby reduce the model’s sensitivity towards them, hence minimizing the misclassification rate. The
other method used has been the quadratic optimization with the hard margin loss, which is used to
minimize the number of misclassification points by giving 1 to misclassified points or to those that lie
in the margin and 0 loss to the correctly classified (Wang et al., 2021). Further, a discrete SVM clas-
sifier has been formulated using the hard margin loss with the linear kernel (Orsenigo and Vercellis,
2003).

Incidentally, many of these cost functions can replace the costs needed to be minimized for every
data item xi; for example, the step loss function based SVM classifier for binary classification (Jarray
et al., 2018). This method overcomes the issue of the hard and ramp losses by introducing different
costs for each instance according to where the points are located. Considerations are made as to
whether the points lie within or outside the margin, and also whether they tend to be correctly classified
or misclassified (Jarray et al., 2018; Brooks, 2011).

One of the most frequent problems in efficient classification or prediction for regression is hav-
ing collinearity among predictors (Dormann et al., 2013; Siqueira et al., 2018; Han et al., 2013).
This phenomenon reflects difficulty in finding a linear separable hyperplane as well as increased com-
putational time because of the large sets of support vectors. However, although deriving principal
components for some datasets could reduce the association (Rencher, 2003), this is still not enough
to accelerate the computation time and minimize the misclassification. The main focus of our study
was to improve the objective function of the classical SVM classifier by incorporating the centroid
and marginal costs. Other specific contributions of the study are reflected in the theoretical derivation
of the appropriate centroid cost function. This study proposes a novel SVM classifier that aggre-
gates centroid and marginal costs for the non-separable data. The performance of our novel approach
was evaluated against the classical SVM using simulation studies and an application on multivariate
classification of COVID-19 patient hospitalization outcomes. Further validation is done to check the
robustness of the proposed method in the presence of outliers or extreme data on the misclassification
rate.

2. Method

2.1. Formulation of the centroid cost

The linear classifier f (xi) = βT xi + β0, i = 1, 2, . . . , n. of the support vector machine, SVM takes the
data point xi ∈ <

p to one of the two classes yi ∈ {−1, 1} . In the non-separable case, data points are
mainly overlapped rendering it difficult to find a linear hyperplane β, which can easily separate the
data points, and therefore lead to high misclassification rates. One possibility was to introduce slack
variables for each data point to measure the distance between each data point and its correspond-
ing marginal plane. These distances that need to be minimized are associated with a free penalized
parameter (C).

In our case, we introduced a cost function that measures all the individual distances from their
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corresponding centroids. Accordingly, the most suitable cost function should take into account the
variation of distances from the centroid. We used the quadratic cost function (zi − E(zi))2, where E(zi)
is the expected value of the data value i, i = 1, . . . , n (Here E(zi) = z̄, z̄ =

∑n
i=1 zi/n ), because of its

desirable properties. The enhanced optimization system for this compounding cost helps us to find
the optimal separable hyperplane β. The enhanced optimization system was set up as below:

1. The marginal distance between the two hyperplanes y = −1 and y = +1 is 2/‖ β ‖2 that needs to be
maximized, which as a convex minimization problem becomes:

Minβ
‖β‖2

2
.

2. The classical linear non-separable hyperplane for the SVM classifier should be subjected to the
following well known optimization problem:

classicalSVM =



Minβ,ζi

1
2
‖β‖22 + C

n∑
i=1

ζi

s.t.,

yi

(
β0 + βTxi

)
≥ 1 − ζi, i = 1, . . . , n

ζi ≥ 0.

(2.1)

3. It is required to minimize the compounding cost, which measures the risk that a data point is
misclassified. There are two kinds of costs responsible for this risk; the marginal cost, C

∑n
i=1 ζi,

and the centroid cost (zi − z̄i)2, where zi = β0 + βTxi.

4. Compounding the two costs in one minimization problem, gives the proposed SVM:

proposedSVM =



Minβ,ζ
1
2
‖β‖22 + C

n∑
i=1

ζi + Centroid

s.t.,

yi

(
β0 + βTxi

)
≥ 1 − ξi, i = 1, . . . , n

ζi ≥ 0.

(2.2)

5. The proposed SVM works on the assumption that these constituent costs, that is, the marginal and
centroid costs, are independent and not identically distributed, especially when the sample size is
small.

2.2. Defining the centroid cost function in terms of β

Our proposed centroid cost function is the quadratic centroid cost that replaces the centroid term in
model 2.2. It represents the sum of all corresponding losses for each xi. Quadratic cost function is a
good choice in measuring the losses because it represents very well the sum of two within covariance
matrices, thereby the estimated β may minimize the association between predictors. Since we are
seeking to minimize that expression with respect to β, it is a good idea also to express the centroid
cost in term of β so that it can be minimized.
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We define the algebraic function for the cost as follows:

Centroidcost =

2∑
j=1

n j∑
i=1

(
zi j − E

(
zi j

))2
, (2.3)

where zi j = β0 + βT xi j, E(zi j) = z̄ j = z̄ j =
∑n j

i=1 zi j/n j = βT x̄ j, j = 1, 2 (ignoring β0 for simplicity). On
substituting these individual expressions in the main expression of centroid cost function (2.3) yields
the cost function in terms of β as follows:

Centroidcost

(
β | Xn×p

)
=

2∑
j=1

n j∑
i=1

(
βT xi j − β

T x̄ j

)2

=

2∑
j=1

n j∑
i=1

βT
(
xi j − x̄ j

)
βT

(
xi j − x̄ j

)
= βT

2∑
j=1

n j∑
i=1

(
xi j − x̄ j

) (
xi j − x̄ j

)T
β

= βTAβ. (2.4)

Ultimately, the optimization system for the linear non-separable support vector machine can be
defined as follows :

ProposedSVM =



Minβ, ζ
1
2
‖β‖22 + C

n∑
i=1

ζi + βTAβ

s.t.,

yi(B0 + βT xi) ≥ 1 − ζi, i = 1, . . . , n
ζi ≥ 0,

A > 0,

(2.5)

where A is p × p (p is number of attributes) symmetric matrix representing the sum of within covari-
ance matrices: A = Σ1 + Σ2 and C is the parameter that tells the SVM optimization how much you
want to avoid misclassifying each training data point. This last model 2.5 requires to be minimized
by finding the optimum hyperplane β under the influence of the quadratic centroid cost function.

2.3. Finding the optimal hyperplane β

In order to estimate the parameters {β, ζ}, we need to construct the lagrangian primal function for
the constrained optimization system as follows:

FD =
1
2
‖β‖22 + βTAβ −

n∑
i=0

[
αi

(
yi

(
β0 + βTxi

)
− (1 − ζi)

)]
−

n∑
i=1

ηiζi, (2.6)

where αi and ηi are the lagrange multipliers greater than 0. To minimize Equation (2.6), we need to
differentiate it with respect to β0, β and ζi; and then, substitute these quantities in the original primal
function to be reduced in α and consequently solve for α to obtain its final estimate. Algebraic steps
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are shown as follows:

∂Fp

∂β0
= −

n∑
i=1

αiyi = 0. (2.7)

∂Fp

∂β
= β + 2ATβ −

∑
αiyixi = 0p×1. (2.8)

Solving Equation (2.8) for β yields:

β =
(
Ip + 2AT

)−1
n∑

i=0

αiyixi, (2.9)

where the expression (Ip + 2 AT )−1 can be denoted by the p× p matrix E under the condition that A is
a non-singular matrix since it is positive definite. Thus, β = E

∑n
i=0 αiyixi.

∂Fp

∂ζi
= C − αi − ηi = 0

⇒ αi = C − ηi. (2.10)

Now, we substitute Equations (2.7), (2.9) and (2.10) into Equation (2.6) to yield:

FD =
1
2

 n∑
i=0

αiyixT
i

 ETE

 n∑
i=0

αiyixi

 + C
n∑

i=1

ζi

+

 n∑
i=0

αiyixT
i

 ETAE

 n∑
i=0

αiyixi

 − n∑
i=0

αiyiB0

−

 n∑
i=0

αiyixT
i

 E

 n∑
i=0

αiyixi

 +

n∑
i=0

αi −

n∑
i=0

αiζi −

n∑
i=0

(C − αi) ζi , (2.11)

where E = (I + 2AT )−1 is a p × p symmetric positive definite matrix since A is symmetric positive
definite matrix.

However, Equation (2.11) can be written in vector and matrix form as follows:

FD =
1
2
αT

1×n

Dn×n︷                                                                  ︸︸                                                                  ︷
diag {y1, y2, . . . , yn} Xn×pE2XT

p×n diag {y1, y2, . . . , yn} α

+ αT
1×n

Fn×n︷                                                                   ︸︸                                                                   ︷
diag {y1, y2, . . . , yn} Xn×pETAEXT

p×ndiag {y1, y2, . . . , yn}α

− αT
1×n

Gn×n︷                                                             ︸︸                                                             ︷
diag {y1, y2, . . . , yn} Xn×pEXT

p×ndiag {y1, y2, . . . , yn}α +
∑

αi . (2.12)

FD (α) =
1
2
αT Dn×nα + αT Fn×nα − α

T Gn×nα + αT 1n. (2.13)
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Differentiating Equation (2.13) with respect to α and setting it equal to 0, we find:

∂FD

∂α
= DTα + 2FTα − 2GTα + 1n = 0n×1

⇒ α̂ = [2G − D − 2F]−1 1n. (2.14)

Equation (2.14) is solved with the Karush-Kuhn-Tucker condition αT y = 0 (Gordon and Tibshi-
rani, 2012), where matrices G,D and F are symmetric positive definite. Since α is the set of (n) la-
grangian multipliers, all its entries are greater than 0. In order to show that matrix H = [2GT−DT−2FT ]
is invertible, we need to make sure its expression is positive definite and all its eigenvalues are positive.
Thus, the expression of matrices is invertible. The following steps illustrate that idea.

Referring to Equation (2.12), we let:

Q = YXE ⇒ QT = EXTY .

When E is symmetric and Y is an n × n diagonal matrix, it implies that:

Dn×n = QQT, Fn×n = QAQT,

and

Gn×n = diag {y1, y2, . . . , yn} XEE−1EXT diag {y1, y2, . . . , yn}

= QE−1QT

= Q
[
(I + 2A)−1

]−1
QT

= Q (I + 2A) QT

= QIQT + 2QAQT

= D + 2F.

After substituting the quantities of (G,D, F), we obtain:

H = 2G − D − 2F = 2 (D + 2F) − D − 2F

= 2D + 4F − D − 2F

= D + 2F > 0.

We can see from the expressions of D, F and G that these are symmetric matrices confirming that
the inverse of matrix H always exists.

2.4. Assessing performance of the proposedSVM classifier

The linear classifier of xi is

yi = sign f (x̂i) = sign
(
β̂0 + β̂Txi

)
=

 +1 if β̂0 + β̂T xi > 0,

−1 if β̂0 + β̂T xi < 0.
(2.15)

Two criteria were used to validate the performance of the proposed SVM classifier in comparison
with the classical SVM classifier. The following table illustrates these proportions:
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Table 1: Confusion matrix to assess performance of SVM classifiers

True/Predicted class 1 class 2 total
class 1 n11 n12 n1
class 2 n21 n22 n2

True/Predicted class 1 class 2 total
class 1 O11 O12 O1
class 2 O21 O22 O2

Table 2: Performance Comparisons of two classification methods based on simulated data

Data set n a H0 : µ1 = µ2 MCR MCRc H0 : MCR = MCRc F1 F1
NO. sample size variation p-value SVM SVMC p-value SVM SVMC

Variation effect a
1. 40 2 0.0000 0.2588 0.2451 0.3830 0.7997 0.7939
2. 40 3 0.0011 0.2898 0.2760 0.4369 0.7532 0.7514
3. 40 6 0.0177 0.3131 0.3198 0.7574 0.6858 0.6844
4. 40 12 0.1098 0.3631 0.3623 0.9066 0.6402 0.6387

Sample size effect n
5. 40 3 0.0081 0.2502 0.2642 0.1583 0.7705 0.7567
6. 60 3 0.0014 0.2618 0.2700 0.2615 0.7578 0.7492
7. 100 3 0.0000 0.3113 0.3253 0.4811 0.7458 0.7449
8. 200 3 0.0000 0.3775 0.3658 0.2720 0.7521 0.7479
9. 350 3 0.0000 0.4275 0.4258 0.3120 0.7521 0.7499

It can be defined that n11, n22 are the correctly classified data values from class 1 and class 2,
respectively. Also, n12 and n21 are the misclassified data values from class 1 and class 2, respectively.
The confusion matrix to the right of Table 1 measures the proportion of misclassification for the
extreme data (outliers). Generally, p11, p22 refer to the proportions of the correctly classified extreme
values from class 1 and class 2, respectively, whereas p12 and p21 are the proportions of misclassified
extreme values from class 1 and class 2, respectively. We utilized these measures to validate the
performance of our novel modified SVM.

2.5. Algorithm to validate the proposedSVM classifier

In Algorithm 1, we setup the sample sizes for both groups needed for the simulation (N/2) with
the number of iterations (iter) required to calculate misclassification rates (MCR) for each. Then,
inside the subroutine, the mean vectors of the two groups were tested in order to relate between the
behaviour of how the data are separated as well as the resulting MCR. We calculate E, a matrix needed
to find other matrices D, F, and G. Because of the high-dimensionality data issue of matrix H, in most
cases, many recommendations have been made to estimate H such as shrinkage method (Wang et al.,
2015). However, in our case, we instead used the Moore-Penerose generalized inverse (Shinozaki et
al., 1972) to find the solution for the linear system that yields the lagrangian estimator (α).

3. Results

3.1. Simulation study 1

In this simulation study, we sought to validate the effect of sample size and variation in the data on
the misclassification rates for the different samples under the proposed method using the quadratic
centroid cost function SVMc. The samples were generated and tested for their homogeneity in both
groups, and were controlled by a positive value (a), such that

∑
1 =

∑
2 = aIp, where I is the identity
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Data: simulated Data.txt
Result: Calculate MCR for SVM-Cost classifier
initialization N, iter , τ = 1 ;
while τ < iter do

Simulate N;
Test µ1 = µ2 &

∑
1 =

∑
2;

Find E = ( I + 2 A)−1;
Find matrices G,D,F;
Find H=2G-D-2F;
Solve Hα = 1, αT y = 0;
Find hyperplane β, β0;
Calculate MCR;
τ← τ + 1;

end
Algorithm 1: Simulation studies to validate the proposedSVM classifier

Table 3: Comparison of MCR based on simulated data

Misclassification results
Sample Original PC

n SVM SVMC SVM SVMC
70 0.3428 0.3285 0.3428 0.3714
80 0.3750 0.4500 0.3750 0.4000
100 0.4600 0.4500 0.4300 0.4500
120 0.4000 0.4250 0.4000 0.4083
200 0.4150 0.4100 0.4150 0.4150
250 0.4000 0.4040 0.4000 0.4120
280 0.4714 0.4571 0.4714 0.4500
370 0.4567 0.4594 0.4567 0.4594
470 0.4127 0.3978 0.4127 0.3936
720 0.4458 0.4486 0.4458 0.4500

matrix of the dimension equal to the number of predictors. In each iteration for generating samples,
we changed the parameters of the sample size (n), and the value of (a) to see how these affect the
performance of each method in terms of the MCR. Furthermore, we evaluated the performance using
the F1-score, which is based on the concept in 1. Some numerical results are summarized in Table 2.

We generated 100 datasets for each pair (n, a). In Table 2, it can be seen that by fixing the sample
size and increasing the variation in the data, the MCRs for the two SVM classifiers did not vary
significantly. Secondly, although the performance of both methods revealed increases in the MCRs as
the sample size increased, there was no significant difference on the predictive classification efficiency
of the two methods. Furthermore, the F1-score confirmed that the performances of the classical
SVM and the proposed SVMC were approximately the same, with SVMC performing slightly better,
especially for larger sample sizes.

3.2. Simulation study 2

In this simulation study, we sought to validate the proposed classifier, where two multivariate normal
samples from populations have significant association between predictors. We generated covariance
matrices that have positive eigenvalues λ j > 0, j = 1, . . . , p. We noted that minimizing them affected
the cost of classifying data items, which measures the distance from its corresponding centroid. In
order to assess the effect within covariances in the objective function, we used the principal compo-
nents (PCs) method instead of the original variables and compared MCR for both methods of SVM
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Figure 1: Effect of changes in the proportion of extreme values with sample size on MCR.

classifiers. In Table 3, results from the simulated data for the two multivariate groups show lower
misclassification rates for both the proposed SVMC and SVM classifiers using the original variables
compared to the one where the PCs were used. However, this difference was not significant, and this
difference tended to be equal as the sample size n increased.

3.3. Simulation study 3

In this study, we validated the influence of extreme values and sample size on the misclassification
rate for the proposed SVM classifier. We used the minimum covariance determinant estimator to get
the estimates of the Mahalanobis distance. The robust estimators for location and covariance were
calculated by using subset J of observations of size h, which minimizes the determinant of the sample
covariance matrix, which were only computed from only these h points. Then, these estimators were
used to find the robust Mahalanobis distances for each data point (Cabana et al., 2017). Results in
Table 3 show that the proportion of extreme values or outliers decreased as the sample size increased.
In other words, the effect of outliers is negligible with a large sample size.
Further, the proportion of extreme values that contributed to misclassification decreased when the
sample size increased. Figure 1 compares the misclassified extreme value rates of the proposed SVMC
and SVM classifiers. Both proportions decreased as the sample size increased. The proportion of mis-
classified extreme values (outliers) among all misclassified points using the proposed SVMC classifier
(A3) is lower than the corresponding proportion under the classical SVM classifier (A2) and tend to
be consistent.

3.4. Application on COVID-19 hospitalized patient survival

In this application, we sought to investigate the performance of the proposed SVMC classifier using
real-life data on the COVID-19 patient hospitalization outcome. The data, (Khamis et al., 2021) were
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Table 4: Comparison of misclassification rates based on COVID-19 survival data

True/Predicted
Original data Principal components

SVM SVMc SVM SVMc
Died Survived Died Survived Died Survived Died Survived

Died 81 88 118 51 169 0 115 54
Survived 18 16 14 20 33 1 6 28

MCR 52.2% 32% 16.2% 29.5%

collected from The Royal Hospital in Oman. The final data for the application included information
on 203 COVID-19 confirmed patients for only complete data. We sought to build a linear classifier
for the death outcome due to COVID-19 based on some given features.

Using the COVID-19 data, we constructed a linear classifier based on the two classification meth-
ods: The classical SVM method and the proposed SVMC method. Before classifying, we tested for
separation between means of groups (p < 0.001), that indicated possible separation and homogeneity
(p < 0.001), to confirm the existence of large differences between covariances in the groups which
may have been due to the unbalanced group sample sizes.

Results in Table 4 show that the misclassification rate of SVM (52.2%) was relatively higher than
that for the proposed SVMC (32%), which reflects a better and more efficient performance for the
proposed SVM classification method. Furthermore, results based on the PCs were as expected since
PCs usually work to eliminate the correlation between the original variables. For this reason, MCR
of the classical SVM was lower than that for the proposed method since the SVMC is expected to
perform better in the presence of more significant correlations among variables.

4. Discussion

The nature of a data structure is a key determinant for how efficient an SVM classifier can be. When
data are linearly separable, the problem centers around how to determine the most optimal hyperplane
(Al-Shukeili and Wesonga, 2021). However, when data are linearly non-separable, the key problem
expands to examining the nature relationships among the data parameters and covariances. Distinct
types of algorithms for the SVM deal with two situations for the non-separable data, namely the par-
tially overlapped, but linearly separable and the perfectly mixed data. As a consequence, identifying a
linear separable hyperplane is difficult and probably the reason for high misclassification. The kernel
trick has been used whereby a specific transformation function is developed to convert the non-linear
separable dataset to linearly separable (Izenman, 2008). Despite the differences in data structures, the
SVM classifier still employs the same objective function in the quadratic programming regardless of
these situations. In this study, we have modified the objective function for the linearly non-separable
problem by introducing a centroid mean vector that demonstrated our method’s ability to minimize the
squared distances and consequently the misclassification rates. Figure 2 demonstrates the principles
of our proposed method for the linearly non-separable SVM classification problem.

To validate the proposed modification for the classical SVM objective function, we focused the
simulation studies to examine the effects of separation between classes, the large sample size and the
extreme or outliers data points on the rate of misclassification. The findings are further discussed
below.

4.1. Separation between classes and misclassification

At least a minimum level of separation between classes is required for classification to be efficient.
Under the linearly non-separable classification problem, this separability should be compounded with
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Figure 2: Modifying SVM objective with a centroid mean vector.

the centrality of the data for the separate classes. The separation in our solution is measured by
examining the squared distances of the multivariate data items from their respective mean vectors.
Findings from the simulation studies show that in order to achieve minimum misclassification rates, it
is necessary to have meaningful separation between the two classes. This is in agreement with other
studies such as the one that explored classification under high dimensional data (Ghaddar and Joe,
2018; Zhang et al., 2012; Özcan and Gürgen, 2010; Zhang et al., 2022).

4.2. Effect of large sample size on misclassification

In statistics, large sample size has been known to influence both theoretical development and ap-
plied statistical analyses. Sufficient sample size is required, without necessarily being larger than the
number of instances, so as to avoid non-invertibility of the covariance matrices. Results from our
application on the COVID-19 patient data with the sample size of 203 and nine parameters, would
not have been successful if there was a high-dimensional challenge. Indeed, results in Table 4 show a
higher misclassification rate for the classical SVM (52.2%) than for the proposed SVM (32%). This
can be explained by the original data having correlated parameters. However, when data do not have
significant correlations among parameters, such as the principal components, the classical SVM pro-
duces a lower misclassification rate. A related study that attempted to resolve the SVM classification
with significantly correlated parameters proposed a doubly regularized SVM, which treated the L1
norm together with the standard L2 norm (Wang et al., 2006).

4.3. Effect of extreme or outlier values on misclassification

Outliers or extreme values may influence the rate of classification efficiency. It is also known that
the quadratic cost may be influenced by extreme values or outliers. This effect may be minimized
by increasing the sample size, though the classification problem is not limited to large samples only.
Indeed, findings from our third simulation study show that the proportions of misclassified outliers
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among all misclassified points using the proposed SVMC were lower than the corresponding propor-
tions using the classical SVM in terms of their resultant mean and variance. The effect of outliers
has been demonstrated in applications that show its effect on the accuracy of the SVM classifier (De-
bruyne, 2009). Regarding the imbalanced sample size of the binary classification that was discussed
in the study (Tang et al., 2008; Pérez-Cruz et al., 2005), we also found also that our proposed SVMC
performs well, even in the presence of the imbalanced data issue.

5. Conclusions

Our proposed SVMC classifier presents a competitive approach to predict the class membership for
the binary groups when separation between them is reasonable with significant associations among
class predictors. We considered the quadratic centroid cost function, which involve two within the co-
variance matrices. The validation results from all three simulation studies demonstrate the superiority
of the proposed method and, in most cases, its convergence to the classical SVM as the sample size
increases. Despite the convexity and parabolic structure of the centroid mean vector or cost function,
the misclassification of extreme values or outliers decreases as the sample size increases. Moreover,
based on the application with COVID-19 patient hospitalization, the proposed SVMC method is su-
perior to the standard SVM, even when the imbalanced data are used.
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