• Title/Summary/Keyword: Support Vector Model

검색결과 881건 처리시간 0.028초

텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안 (Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining)

  • 김익준;이준호;김효민;강주영
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.149-169
    • /
    • 2020
  • 현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.

Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구 (A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction)

  • 이재성;전승표;서진이
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.73-95
    • /
    • 2021
  • 본 연구는 Node2vec 그래프 임베딩 방법과 Light GBM 링크 예측을 활용해 우리나라 식음료 산업의 미개척 수출 후보국가를 탐색한다. Node2vec은 네트워크의 공통 이웃 개수 등을 기반으로 하는 기존의 링크 예측 방법에 비해 상대적으로 취약하다고 알려져 있던 네트워크의 구조적 등위성 표현의 한계를 개선한 방법이다. 따라서 해당 방법은 네트워크의 커뮤니티 탐지와 구조적 등위성 모두에서 우수한 성능을 나타내는 것으로 알려져 있다. 이에 본 연구는 이상의 방법을 우리나라 식음료 산업의 국제 무역거래 정보에 적용했다. 이를 통해 해당 산업의 글로벌 가치사슬 관계에서 우리나라의 광범위한 마진 다각화 효과를 창출하는데 기여하고자 한다. 본 연구의 결과를 통해 도출된 최적의 예측 모델은 0.95의 정밀도와 0.79의 재현율을 기록하며 0.86의 F1 score를 기록해 우수한 성능을 나타냈다. 이상의 모델을 통해 도출한 우리나라의 잠재적 수출 후보국가들의 결과는 추가 조사를 통해 대부분 적절하게 나타난 것을 알 수 있었다. 이상의 내용을 종합하여 본 연구는 Node2vec과 Light GBM을 응용한 링크 예측 방법의 실무적 활용성에 대해 시사할 수 있었다. 그리고 모델을 학습하며 링크 예측을 보다 잘 수행할 수 있는 가중치 업데이트 전략에 대해서도 유용한 시사점을 도출할 수 있었다. 한편, 본 연구는 그래프 임베딩 기반의 링크 예측 관련 연구에서 아직까지 많이 수행된 적 없는 무역거래에 이를 적용했기에 정책적 활용성도 갖고 있다. 본 연구의 결과는 최근 미중 무역갈등이나 일본 수출 규제 등과 같은 글로벌 가치사슬의 변화에 대한 빠른 대응을 지원하며 정책적 의사결정을 위한 도구로써 충분한 유용성이 있다고 생각한다.

중소기업 기술 유출에 대한 조기경보시스템 개발에 대한 연구 (Development on Early Warning System about Technology Leakage of Small and Medium Enterprises)

  • 서봉군;박도형
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.143-159
    • /
    • 2017
  • 급속한 IT의 발전으로 인해 개인정보뿐만 아니라 기업이 보유하고 있는 핵심 기술 및 정보에 대한 유출 위협이 중요한 이슈로 인식되고 있다. 기업에게 있어서 보유하고 있는 핵심 기술은 기업의 생존 및 지속적으로 경쟁 우위를 차지하기 위해 매우 중요한 부분이다. 최근 기술 침해 사례가 많이 일어나고 있는데, 기술 유출은 기업에게 있어서 주가하락 등의 막대한 재무적인 손실을 가져올 뿐만 아니라, 기업의 신뢰에 손상을 입게 되고, 기업의 발전을 지연시키게 되는 악영향을 미치게 된다. 특히, 대기업에 비해 핵심기술이 기업 내 중요한 많은 부분을 차지하는 중소기업에 있어서 기술 유출에 대한 대비는 기업의 존립에 있어서 필수적인 요소로 볼 수 있다. 이처럼 정보 보안 관리의 필요성과 중요성이 대두되면서 기업 입장에서 조기에 기술 침해 위협에 대해 확인하고 대비할 필요가 있다. 본 연구에서는 기술 유출에 영향을 미치는 요인들을 탐색하는 실증 분석을 수행하고, 인공지능 알고리즘을 통해 기술유출 조기경보시스템을 개발하고자 한다. 구체적으로 본 연구에서는 중소기업이 보유한 기술 유출에 영향을 미치는 요인들을 로지스틱 회귀분석을 통해 확인해보고, 통계분석을 통해 검증된 요인들을 기반으로 인공지능 여러 기법들 중 하나인 Support Vector Machine을 활용하여 기술침해 가능성을 조기에 알려주는 모형을 개발하였다. 본 연구에서 제안하는 기술 유출 가능성에 대한 조기 경보 모형을 통해 기업 및 정부 관점에서 기술 유출을 미리 예방할 수 있는 기회를 제공할 수 있을 것으로 기대된다.

VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구 (VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram)

  • 김성철;유환조
    • 한국멀티미디어학회논문지
    • /
    • 제13권5호
    • /
    • pp.722-729
    • /
    • 2010
  • 예측 문제를 해결하기 위한 데이타마이닝 기법은 다양한 분야에서 주목받고 있다. 이것에 대한 한 예로 컴퓨터-기반의 질병의 예측 혹은 진단은 CDSS(Clinical Decision support System)에서 가장 중요한 요소이기도 하다. 이러한 예측 문제를 해결하기 위해서 RBF커널 같은 비선형 커널을 사용한 SVM이 가장 널리 사용되고 있는데, 이는 비선형 SVM이 어떠한 다른 분류기법보다 정확한 성능을 보이기 때문이다. 하지만 비선형 SVM을 사용한 경우에는 모델내부를 시각화하는 일이 어려워서 예측결과에 대한 직관적인 이해가 힘들고, 의학 전문가들은 이러한 비선형 SVM의 사용을 기피하고 있는 실정이다. Nomogram은 SVM을 시각화하기 위해 제안된 기법이다. 하지만 이는 선형 SVM의 경우에만 사용이 가능하고. 이 문제를 해결하기 위해서 LRBF 커널이 제안된 바 있다. LRBF 커널은 기존의 RBF 커널을 사용한 SVM과 대등한 결과를 보이면서도 예측결과의 선형적 분석도 가능하게 한다. 본 논문에서는 노모그램(Nomogram)과 LRBF 커널을 사용한 SVM이 통합되어 있는 예측 툴 VRIFA를 제안한다. 이 툴은 사용자와 상호작용하며 비선형 SVM 모델의 내부구조를 데이타의 각 속성별로 보여주는 방법으로 사용자가 예측결과를 직관적으로 이해하도록 도와준다. VRIFA는 Nomogram기반의 피쳐선택(feature selection) 기능도 포함하고 있는데, 이 기능은 예측결과에 부정적인 영향을 끼치거나 중복된 연관성을 보이는 속성을 제거함으로써 모델의 정확도를 높이는 데 기여한다. 그리고 데이터에 포함된 클래스의 비율이 한 쪽으로 치우쳐져 있는 경우에는 ROC 곡선 넓이(AUC)를 예측결과를 평가하기 위한 측도로 사용할 수 있다. 이 툴은 컴퓨터-기반의 질병 예측 혹은 질병의 위험 요소 분석에 대해 연구하는 연구자들에게 유용하게 사용될 것으로 전망하는 바이다.

인터넷에서의 유해 이미지 컨텐츠 등급 분류 기법 (Classification Method of Harmful Image Content Rates in Internet)

  • 남택용;정치윤;한치문
    • 한국정보과학회논문지:정보통신
    • /
    • 제32권3호
    • /
    • pp.318-326
    • /
    • 2005
  • 본 논문은 인터넷 둥을 통해 유입되는 유해 이미지를 그 특징을 이용하여 무해, 선정, 유해(누드), 심한 유해(성인물)과 같은 이미지 컨텐츠의 등급으로 선별하기 위한 이미지 특징 추출 방법과 이미지분류 기술을 제시한 것이다. 이를 위해 본 논문에서는 입력 이미지에서 유해 정보임을 인식하기 위한 피부 영역 검출 기법을 제시한다. 또한, 노이즈를 줄이고 효과적으로 유해성 정도를 추출하기 위해 관심 영역을 설정하고 그 관심 영역 안에서만 특징을 정의하는 관심 영역 검출 알고리즘을 제안한다. 그리고 이미지를 4 종류의 등급으로 선별하기 위해 유해 이미지 분류 모델을 생성하는 다중 SVM 학습 기법과 생성된 분류 모델을 이용하여 입력 데이타의 유해 등급을 분류하는 다중 SVM 분류 기법을 제시한다. 특히 피부색 영역 이미지의 형태 정보와 피부색 비율 이미지의 색깔정보를 합하여 만든 피부색 가능성 분포 이미지를 제시하고, 이 피부색 가능성 분포 이미지를 축소하여 학습 과정에서 특징 분류를 위해 이용하는 이미지 특성 벡터를 제안한다. 마지막으로 본 논문에서 제안한 유해 이미지 등급 선별 기법을 적용한 실험 결과와 이미지의 유해 둥급 분류에 대한 판별 성능을 평가한다.

SVM과 로짓회귀분석을 이용한 흥미있는 웹페이지 예측 (Predicting Interesting Web Pages by SVM and Logit-regression)

  • 전도홍;김형래
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.47-56
    • /
    • 2015
  • 흥미 있는 웹페이지의 자동화된 탐색은 다양한 응용 분야에 활용될 수 있다. 웹페이지에 대한 사용자의 흥미는 판단하는 것은 사용자의 행동을 관찰함으로 자동화가 가능하다. 흥미 있는 웹페이지를 구분하는 작업은 판별 문제에 속하며, 우리는 실증을 위해 화이트 박스의 학습 방법(로짓회귀분석, 지지기반학습)을 선택한다. 실험 결과는 다음을 나타내었다. (1) 고정효과 로짓회귀분석, polynomial 과 radial 커널을 이용한 고정효과 지지기반학습은 선형 커널보다 높은 성능을 보였다. (2) 개인화가 모델 성능을 향상시킴에 있어 주요한 이슈이다. (3) 사용자에게 웹페이지에 대항 흥미를 물을 때, 구간은 단순히 예/아니 도 충분할 수 있다. (4) 웹페이지에 머문 기간이 매초 증가할 때마다 성공확률은 1.004배 증가하며, 하지만 스크롤바 클릭 수 (p=0.56) 와 마우스 클릭 수 (p=0.36) 지표는 흥미와 통계적으로 유의한 관계를 가지지 않았다.

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.

기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구 (An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.37-62
    • /
    • 2018
  • 문헌정보학 분야의 국내 학술지 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히, "정보관리학회지"에 수록된 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 용어 가중치부여 기법, 학습집합 크기, 분류 알고리즘, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 각 요소를 적절하게 적용하는 것이 효과적이며, 보다 단순한 모델의 사용으로 상당히 좋은 수준의 성능을 도출할 수 있었다. 또한, 국내 학술지 논문의 분류는 특정 논문에 하나 이상의 범주를 할당하는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있다. 따라서 이러한 환경을 고려하여 단순하고 빠른 분류 알고리즘과 소규모의 학습집합을 사용하는 최적의 분류 모델을 제안하였다.

지역 기상 정보를 활용한 단기 전력 수요 예측 모델 (A New Prediction Model for Power Consumption with Local Weather Information)

  • 탁해성;김태용;조환규;김희제
    • 한국콘텐츠학회논문지
    • /
    • 제16권11호
    • /
    • pp.488-498
    • /
    • 2016
  • 많은 정보가 데이터로 저장되면서, 데이터를 분석하거나 특수 상황을 예측하기 위한 연구들이 진행되고 있다. 특히, 전력 데이터의 경우 환경적 요인에 의한 예측 연구 및 신재생 에너지를 활용하는 스마트그리드와 마이크로그리드 연구들이 진행 중이다. 본 논문에서는 전력 데이터의 예측을 위해 주변 환경에서 나타나는 데이터를 활용하고자 한다. 이때, 단순 기상 데이터가 아닌 이전 시간에 따른 여러 인자를 반영하여 데이터 예측이 올바르게 이루어지는지를 검증하고자 한다. 검증 과정에서는 유사 기온을 가지는 전력 데이터 선별 예측 결과와 전력 데이터의 길이에 따른 전력 수요 예측 결과를 비교군으로 두고, 기상 정보를 추가 활용하였을 때의 전력 수요 예측 결과를 비교 분석한다. 실험 결과를 통해 기상 정보를 이용할 경우 평균 15% 이내의 최대 오차율 감소 효과를 확인할 수 있다.

컨볼루션 신경망을 이용한 도시 환경에서의 안전도 점수 예측 모델 연구 (A Safety Score Prediction Model in Urban Environment Using Convolutional Neural Network)

  • 강현우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권8호
    • /
    • pp.393-400
    • /
    • 2016
  • 최근, 컴퓨터 비전과 기계 학습 기술의 도움을 받아 효율적이고 자동적인 도시 환경에 대한 분석 방법의 개발에 대한 연구가 이루어지고 있다. 많은 분석들 중에서도 도시의 안전도 분석은 지역 사회의 많은 관심을 받고 있다. 더욱 정확한 안전도 점수 예측과 인간의 시각적 인지를 반영하기 위해서, 인간의 시각적 인지에서 가장 중요한 전역 정보와 지역 정보의 고려가 필요하다. 이를 위해 우리는 전역 칼럼과 지역 칼럼으로 구성된 Double-column Convolutional Neural Network를 사용한다. 전역 칼럼과 지역 칼럼 각각은 입력은 크기가 변환된 원 영상과 원 영상에서 무작위로 크로핑을 사용한다. 또한, 학습 과정에서 특정 칼럼에 오버피팅되는 문제를 해결하기 위한 새로운 학습방법을 제안한다. 우리의 DCNN 모델의 성능 비교를 위해 2개의 SVR 모델과 3개의 CNN 모델의 평균 제곱근 오차와 상관관계 분석을 측정하였다. 성능 비교 실험 결과 우리의 모델이 0.7432의 평균 제곱근 오차와 0.853/0.840 피어슨/스피어맨 상관 계수로 가장 좋은 성능을 보여주었다.