• Title/Summary/Keyword: Support Vector Model

Search Result 881, Processing Time 0.023 seconds

Verification Model of the Feedwater Flow for the Calculation of Corrective Performance of Turbine Cycle (터빈 사이클의 보정 성능 계산을 위한 급수 유량의 검증 모델)

  • Kim, Seong-Kun;Yang, Hac-Jin;Lee, Kang-Hee;Choi, Kwang-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.538-544
    • /
    • 2012
  • Analysis of thermal performance is required for the economic operation of turbine cycle of power plant. We developed corrective model of main feed water flow which is the most important parameter for the precise analysis of turbine cycle performance. Classification model for the identification of feed water flow measurement status was applied to increase the suitability of the corrective model. We used neural network and support vector machine to develop estimation model of main feed water flow with more generalization capability. The estimation model can be used practically to evaluate corrective performance of turbine cycle plant.

Development of a Robust Multiple Audio Watermarking Using Improved Quantization Index Modulation and Support Vector Machine (개선된 QIM과 SVM을 이용한 공격에 강인한 다중 오디오 워터마킹 알고리즘 개발)

  • Seo, Ye-Jin;Cho, San-Gjin;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • This paper proposes a robust multiple audio watermarking algorithm using improved QIM(quantization index modulation) with adaptive stepsize for different signal power and SVM(support vector machine) decoding model. The proposed algorithm embeds watermarks into both frequency magnitude response and frequency phase response using QIM. This multiple embedding method can achieve a complementary robustness. The SVM decoding model can improve detection rate when it is not sure whether the extracted data are the watermarks or not. To evaluate robustness, 11 attacks are employed. Consequently, the proposed algorithm outperforms previous multiple watermarking algorithm, which is identical to the proposed one but without SVM decoding model, in PSNR and BER. It is noticeable that the proposed algorithm achieves improvements of maximum PSNR 7dB and BER 10%.

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Prediction of Assistance Force for Opening/Closing of Automobile Door Using Support Vector Machine (서포트 벡터 머신을 이용한 차량도어의 개폐 보조력 예측)

  • Yang, Hac-Jin;Shin, Hyun-Chan;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.364-371
    • /
    • 2016
  • We developed a prediction model of assistance force for the opening/closing of an automobile door depending on the condition of the parking ground. The candidates of the learning models for the operating assistance force were compared to determine the proper force according to the slope and user's force, etc. The reduced experimental model was developed to obtain learning data for the estimation model. The learning algorithm was composed to predict the assistance force to incorporate real assistance force data. Among these algorithms, an Artificial Neural Network (ANN) and Support Vector Machine(SVM) were applied and the adaptability was compared between these models. The SVM provided more adaptability for the learning process of the door assistance force prediction. This paper proposes a system for determining the assistance force to control a door motor to compensate for the deviation of required door force in the slope condition, as needed in the plane condition.

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

Prediction of uplift capacity of suction caisson in clay using extreme learning machine

  • Muduli, Pradyut Kumar;Das, Sarat Kumar;Samui, Pijush;Sahoo, Rupashree
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.41-54
    • /
    • 2015
  • This study presents the development of predictive models for uplift capacity of suction caisson in clay using an artificial intelligence technique, extreme learning machine (ELM). Other artificial intelligence models like artificial neural network (ANN), support vector machine (SVM), relevance vector machine (RVM) models are also developed to compare the ELM model with above models and available numerical models in terms of different statistical criteria. A ranking system is presented to evaluate present models in identifying the 'best' model. Sensitivity analyses are made to identify important inputs contributing to the developed models.

A Take-off Clearance Prediction Model for Mixed Mode Runway Operations (출·도착 혼합 사용 활주로에서의 관제사 이륙 허가 예측 모형 개발)

  • Hong, Sungkwon;Jeon, Daekeun;Kim, Hyounkyoung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.3
    • /
    • pp.48-54
    • /
    • 2016
  • This paper proposes a prediction model of air traffic controller's take-off clearance under mixed mode runway operations. The proposed model has its purpose on the better prediction of the air traffic controller's clearance on take-offs of departure aircraft by considering various factors. For this purpose, support vector machine classification algorithm is used for the proposed model. The proposed model is applied to real air traffic operations to demonstrate its performances.

Feature selection in the semivarying coefficient LS-SVR

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.461-471
    • /
    • 2017
  • In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue is how to identify important features in the varying and the constant effects. We propose a feature selection method able to address this issue using generalized cross validation functions of the varying coefficient least squares support vector regression (LS-SVR) and the linear LS-SVR. Numerical studies indicate that the proposed method is quite effective in identifying important features in the varying and the constant effects in the semivarying coefficient model.

Hybrid Internet Business Model using Evolutionary Support Vector Regression and Web Response Survey

  • Jun, Sung-Hae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.408-411
    • /
    • 2006
  • Currently, the nano economy threatens the mass economy. This is based on the internet business models. In the nano business models based on internet, the diversely personalized services are needed. Many researches of the personalization on the web have been studied. The web usage mining using click stream data is a tool for personalization model. In this paper, we propose an internet business model using evolutionary support vector machine and web response survey as a web usage mining. After analyzing click stream data for web usage mining, a personalized service model is constructed in our work. Also, using an approach of web response survey, we improve the performance of the customers' satisfaction. From the experimental results, we verify the performance of proposed model using two data sets from KDD Cup 2000 and our web server.

  • PDF