• Title/Summary/Keyword: Support Rotation

Search Result 200, Processing Time 0.024 seconds

Motion Change of the Trunk and Upper Extremity Segment to Putting the Wrist Support on Throwing in Bowling (볼링 투구 동작 시 손목 지지대 착용에 따른 몸통과 상지 분절의 움직임 변화)

  • Kim, Tae-Sam;Lee, Hoon-Pyo;Han, Hee-Chang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.33-41
    • /
    • 2006
  • This study was to analysis three dimension angle of the upper extremity segment and trunk to putting the protector in women bowlers. For this study, the subjects selected 4 players of national and university team. All subjects putted in the same wrist support to satisfy the experiment conditions. To get three dimensions position coordination of swing motion used for 6 ProReflex MCU 240 camera produced by Qualisys. After position coordination calculation, Three dimension angle of the trunk and the upper extremity segment calculated for Matlab 6.5. the result is following; In the trunk motion, there were little differences among the subjects in a flexion and extension change. There were a lot of differences in motion change of the abduction-adduction and internal-external rotation, but the motion types translated to the adduction-abduction-adduction and from the internal rotation toward the external rotation. In the upper arm segment the Flexion and extension showed a consistent motion in the down swing and up swing phase. And the motion change of abduction-adduction and pronation-supination showed a abduction-adduction-abduction and pronation-supination change during swing phase. In the forearm segment changes, it showed a lot of differences among the subjects and a similar change with the upper arm segment. Especially, the hand segment showed a supination motion from the backswing apex to release phase, but for increasing a rotation velocity of ball, the hand segment translated toward pronation in follow throw phase.

FE Analysis on the Structural Behavior of the Single-Leaf Blast-Resistant Door According to Design Parameter Variation (설계변수에 따른 편개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Won-Woo;Park, Gi-Joon;Lee, Nam-Kon;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.259-272
    • /
    • 2019
  • Steel-concrete single-leaf blast-resistant doors are protective structures consisting of a steel box and reinforced concrete slab. By the domestic blast-resistant doors, the structure is not designed efficiently because few studies have examined the effects of variables, such as the blast pressure, rebar ratio, and steel plate thickness on the structural behavior. In this study, the structural behavior of the doors was analyzed using the FE method, and the support rotation and ductility ratio used to classify the structural performance were reviewed. The results showed that the deflection changes more significantly when the plate thickness increases than when the rebar spacing is a variable. This is because the strain energy absorbed by the door is reduced considerably when the plate thickness increases, and as a result, the maximum deflection becomes smaller. According to a comparison of the calculated values of the support rotation and the ductility ratio, the structural performance of the doors could be classified based on the support rotation of one degree and ductility ratio of three. On the other hand, more explosion tests and analytical studies will be needed to classify the damage level.

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

A measuring system for determination of a cantilever beam support moment

  • Loktionov, Askold P.
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.431-439
    • /
    • 2017
  • This investigation is aimed to develop a model of experimental-computation determination of a support moment of a cantilever beam loaded with concentrated force at its end including the optimal choice of coordinates of deflection data points and parameters of transformation of deflection data in case of insufficient accuracy of the assignment of initial parameters (support settlement, angle of rotation of the bearing section) and cantilever beam length. The influence of distribution and characteristics of sensors on the cantilever beam on the accuracy of determining the support moment which improves in the course of transition from the uniform distribution of sensors to optimal non-uniform distribution is shown. On the basis of the theory of inverse problems the method of transformation reduction at numerical differentiation of deflection functions has been studied. For engineering evaluation formulae of uncertainty estimate to determine a support moment of a cantilever beam at predetermined uncertainty of measurements using sensors have been obtained.

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

Material and Structure Optimization of Substrate Support for Improving CVD Equipment Up Time (CVD 장비 Up Time 향상을 위한 기판 지지대의 재질 및 구조 최적화)

  • Woo, Ram;Kim, Won Kyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.670-676
    • /
    • 2019
  • We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.

The Efficient Vehicle Recognition Algorithm using Support Vector Machines (Support Vector Machines를 이용한 효율적인 차량 인식 알고리즘)

  • 황원준;송명철;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.327-330
    • /
    • 2000
  • In this paper, we describe an intelligent method to detect types of vehicles using Support Vector Machines focused to the Intelligent Transportation System (ITS) applications such as in the CCD based Electronic Toll Collection System (ETCS). This algorithm can be used the various fields of ITS applications. Support Vector Machines employed in this paper has been recently proposed as a very effective method for 3D image recognition. And our proposed feature extraction method using the singluar values that directly come from pixels at input images. Consequently, The low calculation load and the high recognition rate in spite of image rotation and various noises are one of merits of proposed method.

  • PDF

The Relationship among Stride Parameters, Joint Angles, and Trajectories of the Body Parts during High-Heeled Walking of Woman

  • Park, Sumin;Lee, Minho;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.245-252
    • /
    • 2013
  • Objective: This paper analyzes the changes on stride parameters, joint angles, and trajectories of the body parts due to high heels during walking and explains the causal relationship between the changes and high heels. Background: This study aims to indicate the comprehensive gait changes by high heels on the whole body for women wearing high heels and researchers interested in high-heeled walking. Method: The experiment was designed in which two different shoe heel heights were used for walking (1cm, 9.8cm), and twelve women participated in the test. In the experiment, 35 points on the body were tracked to extract the stride parameters, joint angles, and trajectories of the body parts. Results: Double support time increased, but stride length decreased in high-heeled walking. The knee inflexed more at stance phase and the spine rotation became more severe. The trajectories of the pelvis, the trunk and the head presented outstanding fluctuations in the vertical direction. Conclusion: The double support time and the spine rotation were changed to compensate instability by high heels. Reduced range of motion of the ankle joint influenced on the stride length, the knee flexion, and fluctuations of the body parts. Application: This study can provide an insight of the gait changes by high heels through the entire body.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

The Biomechanical Analysis of Two and Half Rotation Technic of Penche in Rhythmic Gymnastics (리듬체조 퐁쉐 2회전 1/2턴 기술의 역학적 분석)

  • Seo, Se-Mi;Ryu, Ji-Seon;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.269-279
    • /
    • 2011
  • This study was analyzed the characteristics on the stability of posture while conducting a through two and half rotation technic of pench$\acute{e}$ in rhythmic gymnastics. Two rhythmical gymnastics player(LKH and SSJ) who is a member of the national team were selected, and for obtain the kinematic and kinetic variables were used a ProReflex MCU 240 infrared camera(Qualisys, Sweden) and a Type9286A force platform(Kistler, Switzerland). The mechanical factors were computed by using Visual3D program and Matlab R2009a. During the landing and rotation phase the results showed following characteristics; 1) In medial-lateral and horizontal displacement of the support foot, LKH showed smaller movement than SSJ, but SSJ showed smaller movement than LKH in swing foot. LKH showed bigger movement in medial-lateral axis of COP and vertical axis of COG, but SSJ showed bigger movement in horizontal axis of COP and medial-lateral axis of COG. 2) SSJ showed bigger maximum horizontal and vertical velocity at P1 and P2 than LKH. 3) In the inclination angle of COP and COG, SSJ showed smaller change than LKH, but within medial-lateral tilt of the shoulder, LKH performed rotation motion in horizontal position than SSJ. There was no differences in each force components during rotation, but on landing phase, the results showed a characteristic that SSJ exerted bigger breaking force and vertical force than LKH.