• 제목/요약/키워드: Superstability

검색결과 41건 처리시간 0.023초

ON THE SUPERSTABILITY OF THE FUNCTIONAL EQUATION f$(x_1+…+x_m)$ f$(x_1)$…f$(x_m)$

  • Jung, Soon-Mo
    • 대한수학회논문집
    • /
    • 제14권1호
    • /
    • pp.75-80
    • /
    • 1999
  • First, we shall improve the superstability result of the exponential equation f(x+y)=f(x) f(y) which was obtained in [4]. Furthermore, the superstability problems of the functional equation f(x\ulcorner+…+x\ulcorner)=f(x\ulcorner)…f(x\ulcorner) shall be investigated in the special settings (2) and (9).

  • PDF

APPROXIMATE GENERALIZED EXPONENTIAL FUNCTIONS

  • Lee, Eun-Hwi
    • 호남수학학술지
    • /
    • 제31권3호
    • /
    • pp.451-462
    • /
    • 2009
  • In this paper we prove the superstability of a generalized exponential functional equation $f(x+y)=a^{2xy-1}g(x)f(y)$. It is a generalization of the superstability theorem for the exponential functional equation proved by Baker. Also we investigate the stability of this functional equation in the following form : ${\frac{1}{1+{\delta}}}{\leq}{\frac{f(x+y)}{a^{2xy-1}g(x)f(y)}}{\leq}1+{\delta}$.

ON THE SUPERSTABILITY OF SOME FUNCTIONAL INEQUALITIES WITH THE UNBOUNDED CAUCHY DIFFERENCE (x+y)-f(x)f(y)

  • Jung, Soon-Mo
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.287-291
    • /
    • 1997
  • Assume $H_i : R_+ \times R_+ \to R_+ (i = 1, 2)$ are monotonically increasing (in both variables), homogeneous mapping for which $H_1(tu, tv) = t^p(H_1(u, v) (p > 0)$ and $H_2(u, v)^{t^q} (q \leq 1)$ hold for $t, u, v \geq 0$. Using an idea from the paper of Baker, Lawrence and Zorzitto [2], the superstability problems of the functional inequalities $\Vert f(x+y) - f(x)f(y) \Vert \leq H_i (\Vert x \Vert, \Vert y \Vert)$ shall be investigated.

  • PDF

SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE

  • Lee, Young-Whan
    • 대한수학회논문집
    • /
    • 제23권3호
    • /
    • pp.357-369
    • /
    • 2008
  • We obtain the superstability of a generalized exponential functional equation f(x+y)=E(x,y)g(x)f(y) and investigate the stability in the sense of R. Ger [4] of this equation in the following setting: $$|\frac{f(x+y)}{(E(x,y)g(x)f(y)}-1|{\leq}{\varphi}(x,y)$$ where E(x, y) is a pseudo exponential function. From these results, we have superstabilities of exponential functional equation and Cauchy's gamma-beta functional equation.

APPROXIMATE PEXIDERIZED EXPONENTIAL TYPE FUNCTIONS

  • Lee, Young-Whan
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권2호
    • /
    • pp.193-198
    • /
    • 2012
  • We show that every unbounded approximate Pexiderized exponential type function has the exponential type. That is, we obtain the superstability of the Pexiderized exponential type functional equation $$f(x+y)=e(x,y)g(x)h(y)$$. From this result, we have the superstability of the exponential functional equation $$f(x+y)=f(x)f(y)$$.

ON THE SUPERSTABILITY OF THE PEXIDER TYPE SINE FUNCTIONAL EQUATION

  • Kim, Gwang Hui
    • 충청수학회지
    • /
    • 제25권1호
    • /
    • pp.1-18
    • /
    • 2012
  • The aim of this paper is to investigate the superstability of the pexider type sine(hyperbolic sine) functional equation $f(\frac{x+y}{2})^{2}-f(\frac{x+{\sigma}y}{2})^{2}={\lambda}g(x)h(y),\;{\lambda}:\;constant$ which is bounded by the unknown functions ${\varphi}(x)$ or ${\varphi}(y)$. As a consequence, we have generalized the stability results for the sine functional equation by P. M. Cholewa, R. Badora, R. Ger, and G. H. Kim.

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

  • Kim, Gwang-Hui
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권4호
    • /
    • pp.397-411
    • /
    • 2010
  • In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: $f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$ ${\lambda}$: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.