• Title/Summary/Keyword: Superoxide dismutase (SOD).

Search Result 1,701, Processing Time 0.023 seconds

Estimation of Superoxide Dismutase and Glutathione Peroxidase in Oral Submucous Fibrosis, Oral Leukoplakia and Oral Cancer - A Comparative Study

  • Gurudath, Shubha;Ganapathy, K.S.;D., Sujatha;Pai, Anuradha;Ballal, Sushmini;Asha, M.L.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4409-4412
    • /
    • 2012
  • Present study was undertaken to estimate and compare erythrocyte superoxide dismutase (E-SOD) and Glutathione peroxidase (GPx) levels in oral submucous fibrosis, oral leukoplakia and oral cancer patients and age/sex matched healthy subjects, 25 in each group. Statistically significant (P<0.001) decrease in E-SOD and GPx levels were observed in OSF, oral leukoplakia and oral cancer groups as compared to the control group. Oral leukoplakia group showed lower levels in comparison with OSF (P>0.05). Oral cancer group had the lowest levels amongst the study groups. Imbalance in antioxidant enzyme status may be considered as one of the factors responsible for the pathogenesis of cancer and may serve as a potential biomarker and therapeutic target to reduce the malignant transformation in oral premalignant lesions/conditions.

Micronutrients and superoxide dismutase in postmenopausal women with chronic periodontitis: a pilot interventional study

  • Daiya, Sunita;Sharma, Rajinder Kumar;Tewari, Shikha;Narula, Satish Chander;Sehgal, Paramjeet Kumar
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Purpose: The study was aimed at investigating changes in periodontal parameters and superoxide dismutase activity triggered by root surface debridement with and without micronutrient supplementation in postmenopausal women. Methods: Forty-three postmenopausal chronic periodontitis patients were divided into two groups: group 1 (n=22) were provided periodontal treatment in the form of scaling and root planing (SRP) and group 2 (n=21) patients received SRP along with systemic administration of micronutrient antioxidants. Patients in both groups were subjected to root surface debridement. Group 2 patients also received adjunctive micronutrient antioxidant supplementation. Serum and salivary superoxide dismutase (SOD) activity along with periodontal parameters were recorded at baseline and 3 months after therapy. Results: Salivary and serum SOD values significantly (P<0.05) improved with periodontal treatment. Improvement in systemic enzymatic antioxidant status along with reduction in gingival inflammation and bleeding on probing (%) sites was significantly greater in group 2 as compared to group 1. Conclusions: Adjunctive micronutrient supplements reduce periodontal inflammation and improve the status of systemic enzymatic antioxidants in postmenopausal women.

Activities of scavenging enzymes of oxygen radicals in early maturation stages of Paragonimus westermani (산소 라디칼 관련 효소의 폐흡충 발육 단계별 활성도 변화)

  • 정영배;이희성
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.4
    • /
    • pp.355-358
    • /
    • 1992
  • In early maturation stages of Paragonimus westermani (metacercariae, 4-, 8-, 12-week old worms), activities of antioxidant enzymes, such as superoxide dismutase, catalase, peroxidase and glutathione peroxidase, were examined. Specific activity of catalase was the highest in metacercariae and decreasing with age. That of superoxide dismutase was higher in metacercariae and 4-week worms. Specific activity of peroxidase was at its peak in 4-week worms while that of glutathione peroxidase was in 8-week worms. Specific activities of all these antioxidant enzymes were decreased to their lowest in 12-week old adults.

  • PDF

Transcriptional Activation of CuIZn Superoxide Dismutase And Catalase Genes by Panaxadiol Ginsenosides Extracted From Panax ginseng

  • Chang, Mun-Seog;Yoo, Hae-Yong;Rho, Hyune-Mo
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.63-70
    • /
    • 1998
  • Superoxide dismutase (SOD) and catalase constitute the first coordinated unit of defense against reactive oxygen species. Here, we examined the effect of ginseng saponins on the induction of SOD and catalase gene expression. To explore this possibility, the upstream regulatory promoter region of Cu/Zn superoxide dismutase (SODI) and catalase genes were linked to the chloramphenicol acetyl-transferase (CATI structural gene and introduced into human hepatoma HepG2 cells. Total saponin and panaxatriol did not activate the transcription of SODI and catalase genes but panaxadiol increased the transcription of these genes about 2-3 fold. Among the Panaxadiol ginsenosides, the Rb2 subtraction appeared to is a major induce of SODI and catalase genes. Using the deletion analyses and mobility shift assays, we showed that the 5051 gene was greatly activated by ginsenoside Rba through transcription factor AP2 binding sites and its induction. We also examined the effect of the content ratio of panaxadiol extracted from various compartment of ginseng on the transcription of 5031 gene. Saponin extract that contains 2.6-fold more PD than PT from the fine root Increased the SODI induction about 3-fold. These results suggest that the panaxadiol fraction and its ginsenosides could induce the antioxidant enzymes, which are important for maintaining cell viability by lowering level of oxygen radical generated from intracellular metabolism.

  • PDF

Purification and Characterization of Iron-Containing Superoxide Dismutase from Lentinus edodes

  • Park, Sang-Shin;Hwang, Soo-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.854-860
    • /
    • 1999
  • Superoxide dismutase (SOD) was purified to homogeneity from fruiting bodies of edible mushroom, Lentinus edodes, by ammonium sulfate precipitation, diethylaminoethyl (DEAE)-Sepharose FF ion-exchange chromatography, Sephacryl S-200 gel filtration chromatography, and preparative PAGE. The molecular weight of the purified enzyme was estimated to be approximately 54 kDa by gel filtration chromatography, and the enzyme was shown to be consisted of two identical subunits of molecular weight 27 kDa by SDS-PAGE. The isoelectric point of the enzyme was 4.9 as determined by isoelectric focusing. The enzyme had optimal pH and temperature of pH 8.0 and $20^{\circ}C$, respectively. The activity of the enzyme was inhibited by hydrogen peroxide, but inhibited less by cyanide and azide. The native enzyme was found to contain 0.89g-atom of iron, 0.75g-atom of zinc, and 0.46g-atom of copper per mol of enzyme. Analysis of amino acids composition revealed that the SOD from L. edodes contained a relatively large amount of glutamic acid/glutamine, proline, cysteine, isoleucine, and leucine, but only a small amount of aspartic acid/asparagine, tyrosine, and tryptophan when compared to the other iron-containing SODs.

  • PDF

Expression of Lily Chloroplastic Cu,Zn Superoxide Dismutase Enhances Resistance to Erwinia carotovora in Potatoes

  • Kim, Mi-Sun;Kim, Hyun-Soon;Kim, Yoon-Sik;Baek, Kwang-Hyun;Moon, Jae-Sun;Choi, Do-Il;Joung, Hyouk;Jeon, Jae-Heung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.300-307
    • /
    • 2007
  • Previously, a chloroplast-localized Cu,Zn superoxide dismutase (chCu,ZnSOD) was isolated from lily and the sense- and antisense- sequences of the lily chCu,ZnSOD were used to transform potato plants. Two selected lines, the sense- and anti-sense strand of transgenic plants, were further characterized for resistance to Erwinia carotovora, which is a severe pathogen affecting potato plants. Only the sense-strand transgenic potato, which contained less $O_2^{.-}$ and more $H_2O_2$ than wild-type and antisense-strand transgenic plants, showed increased resistance to E. carotovora. Additional studies using $O_2^{.-}$ or $H_2O_2$ scavengers in wild-type, sense-strand, and antisense-strand transgenic plants suggest that resistance to E. carotovora is induced by reduced $O_2^{.-}$ and is not influenced by $H_2O_2$. To the best of our knowledge, this report is the first study suggesting that resistance to E. carotovora is enhanced by reduced $O_2^{.-}$, and not by increased amounts of $H_2O_2$.

Effect of Chromium Stress on Antioxidative Enzymes and Malondialdehyde Content Activities in Leaves and Roots of Mangrove Seedlings Kandelia Candel (L.) Druce

  • Rahman, Mohammed Mahabubur;Rahman, Motiur M.;Islam, Kazi Shakila;Chongling, Yan
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • Effect of chromium (Cr) stress on antioxidant enzyme activities and malondialdehyde (MDA) content were investigated in leaves and roots of mangrove (italic (L.) Druce) seedlings. Cr toxicity effects were also assessed on young seedlings. The seedlings were grown in green house condition for three months in nutrient solution with 0, 0.5, 1, 1.5, 2, 2.5, and 3 mg $L^{-1}$ $CrCl_3$. This study showed that Cr led to the change of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and activities at different concentrations. The activity of antioxidant enzymes in leaves of K. candel seedlings indicates that enzymes engaged in antioxidant defense in certain level especially in low concentration of Cr treatments. The activities of SOD and POD were activated by Cr in the root level, while CAT activity was inhibited. CAT activity decreased in response to high concentrations of Cr. In the present study indicated that SOD in root was active in scavenging the superoxide produced by Cr. Both in roots and leaves, an increase in malondialdehyde (MDA) content was observed with increase in metal concentration and exposure periods. Our finding indicated that the high concentration of excessive Cr supply may interfere with several metabolic processes of seedlings, causing toxicity to plants as exhibited by chlorosis, necrosis, photosynthetic impairing and finally, plant death.

Superoxide Dismutase-like Activity of Apple Juice Mixed with Some Fruits and Vegetables (몇가지 과실, 채소류를 혼합한 사과주스의 SOD 유사활성)

  • Hong, Hee-Do;Kang, Nam-Kil;Kim, Sung-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1484-1487
    • /
    • 1998
  • Superoxide dismutase (SOD)-like activities of sixteen kinds of fruits, vegetable juice and commercial concentrates were measured by pyrogallol autoxidation method. The changes in SOD-like activity by heat treatment and the increase in SOD-like activity of apple juice mixed with fruits and vegetables were investigated. SOD-like activity of broccoli juice was 41.7%, the highest value among tested sample. SOD-like activities of strawberry juice, carrot concentrate, kiwi juice, radish juice and apple juice were 30.2, 30.0, 27.6, 26.7, 24.1 and 14.6%, respectively. SOD-like activity was increased generally after heat treatment at $95^{\circ}C$ until 20 min. SOD-like activity of apple juice was increased $20{\sim}35%$ by mixing with 20% of carrot concentrate, kiwi juice, strawberry juice, broccoli juice, respectively and particularly was increased 48% by mixing with 20% of raddish juice.

  • PDF

Genomic Structure of the Cu,Zn Superoxide Dismutase (SOD1) Gene of Paecillomyces tenuipes and Paecilomyces sp.

  • Park Nam Sook;Lee Kwang Sik;Lee Sang Mong;Je Yeon Ho;Park Eunju;Sohn Hung Dae;Jin Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.1
    • /
    • pp.35-43
    • /
    • 2005
  • We describe here the complete nucleotide sequence and the exon-intron structure of the Cu,Zn superoxide dismutase (SOD1) gene of Paecilomyces tenuipes and Paecilomyces sp. The SOD1 gene of P. tenuipes spans 966 bp, and consisted of three introns and four exons coding for 154 amino acid residues. Three unambiguous introns in P. tenuipes separate exons of 13, 332, 97, and 20 bp, all exhibiting exon sizes identical to Cordyceps militaris SOD1 gene. The SOD1 gene of Paecilomyces sp. contains 946 bp and consisted of four introns and five exons coding for 154 amino acid residues. Five exons of Paecilomyces sp. SOD1 are composed of 13, 180, 152, 97, and 20 bp. Interestingly, this result showed that the total length of exons 2 (180 bp) and 3 (152 bp) of Paecilomyces sp. SOD1 is same to exon 2 length (332 bp) of C. militaris SOD1 and P. tenuipes SOD1. The deduced amino acid sequence of the P. tenuipes SOD1 showed $95\%$ identity to C. militaris SOD1 and $78\%$ to Paecilomyces sp. SOD1. Phylogenetic analysis confirmed that the C. militaris SOD1, P. tenuipes SOD1 and Paecilomyces sp. SOD1 are placed together within the ascomycetes group of fungal clade.