Genomic Structure of the Cu,Zn Superoxide Dismutase (SOD1) Gene of Paecillomyces tenuipes and Paecilomyces sp.

  • Park Nam Sook (College of Natural Resources and Life Science, Dong-A University) ;
  • Lee Kwang Sik (College of Natural Resources and Life Science, Dong-A University) ;
  • Lee Sang Mong (Department of Genomics, Proteomics and Bio-materials, Miryang National University) ;
  • Je Yeon Ho (School of Agricultural Biotechnology, Seoul National University) ;
  • Park Eunju (Division of Life Sciences, Kyungnam University) ;
  • Sohn Hung Dae (College of Natural Resources and Life Science, Dong-A University) ;
  • Jin Byung Rae (College of Natural Resources and Life Science, Dong-A University)
  • Published : 2005.03.01

Abstract

We describe here the complete nucleotide sequence and the exon-intron structure of the Cu,Zn superoxide dismutase (SOD1) gene of Paecilomyces tenuipes and Paecilomyces sp. The SOD1 gene of P. tenuipes spans 966 bp, and consisted of three introns and four exons coding for 154 amino acid residues. Three unambiguous introns in P. tenuipes separate exons of 13, 332, 97, and 20 bp, all exhibiting exon sizes identical to Cordyceps militaris SOD1 gene. The SOD1 gene of Paecilomyces sp. contains 946 bp and consisted of four introns and five exons coding for 154 amino acid residues. Five exons of Paecilomyces sp. SOD1 are composed of 13, 180, 152, 97, and 20 bp. Interestingly, this result showed that the total length of exons 2 (180 bp) and 3 (152 bp) of Paecilomyces sp. SOD1 is same to exon 2 length (332 bp) of C. militaris SOD1 and P. tenuipes SOD1. The deduced amino acid sequence of the P. tenuipes SOD1 showed $95\%$ identity to C. militaris SOD1 and $78\%$ to Paecilomyces sp. SOD1. Phylogenetic analysis confirmed that the C. militaris SOD1, P. tenuipes SOD1 and Paecilomyces sp. SOD1 are placed together within the ascomycetes group of fungal clade.

Keywords

References

  1. Bae, J. S., N. S. Park, B. R. Jin, H. O. Lee, E. Park, B. Tolgor, Y. Liand S. M. Lee (2002) Determination of the ribosomal DNA internal transcribed spacers and 5.8S rRNA sequences of Cordyceps species. Int. J. Indust. Entomol. 5, 85-91
  2. Borders, C. J., J. E. Saunders, D. M. Blech and I. Fridovich (1985) Essentially of the active site arginine residue for the normal catalytic activity of CU, Zn superoxide dismutase. Biochem. J. 230, 771-776
  3. Carlile, M. J. and S. C. Watkinsom (1996) The fungi. Academic Press, pp. 1-152
  4. Chary, P. D,. Dillon, A. L. Schroeder and D. O. Natvig (1994) Superoxide dismutase (sod-I) null mutants of Neurospora crassa: oxidative stress sensitivity, spontaneous mutation rate and response to mutagens. Genetics 137, 723-730
  5. Chary, P., R. A. Hallewell and D. O. Natvig (1990) Structure, exon pattern, and chromosome mapping of the gene for cytosolic copper-zinc superoxide dismutase (sod-1) from Neurospora crassa. J. Biol. Chem. 265, 18961-18967
  6. Chaturvedi, S., A. J. Hamilton, P. Hobby, G. Zhu, C. V. Lowry and Chaturvedi (2001) Molecular cloning, phylogenetic analysis and three-dimensional modeling of Cu, Zn superoxide dismutase (CnSODl) from three varieties of Cryptococcus neoformans. Gene 268, 41-51 https://doi.org/10.1016/S0378-1119(01)00408-5
  7. Chen, Y. Q., N. Wang, L. H. Qu, T. H. Li and W. M. Zhang (2001) Determination of the anamorph of Cordyceps sinensis inferred from the analysis of the ribosomal DNA internal transcribed spacers and 5.8S rDNA. Biochem. System. Ecol. 29, 597-607 https://doi.org/10.1016/S0305-1978(00)00100-9
  8. Crapo, J. D., T. Omy, C. Rabouille, J. W. Slot and L. Y. Chang (1992) Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA 89, 10405-10409 https://doi.org/10.1073/pnas.89.21.10405
  9. Fridovich, I. (1986) Superoxide dismutases. Adv. Enzymol. Rel. areas Mol. Biol. 58, 61-97
  10. Furuya, T., M. Hirotani and M. Matsuzawa (1983) $N^6_(2_hydroxyethyl)adenosine,$ a biologically active compound from cultured mycelia of Cordyceps and Isaria species. Phytochemistry 22, 2509-2512 https://doi.org/10.1016/0031-9422(83)80150-2
  11. Holdom, M. D., B. Lechenne, R. J. Hay, A. J. Hamilton and M. Monod (2000) Production and characterization of recombinant Aspergillus 려migatus Cu, Zn superoxide dismutase and its recognition by immune human sera. J. Clin. Microbial. 38, 558-562
  12. Jamieson, D. J., S. L. Rivers and D. W. Stephen (1994) Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress. Microbiology 140, 3277-3283 https://doi.org/10.1099/13500872-140-12-3277
  13. Kneifel, H., W. A. Konig, W. Loeffler and R. Muller (1977) Ophiocordin, an antifungal antibiotics of Cordyceps ophioglossoides. Arch. Microbiol. 113, 121-130 https://doi.org/10.1007/BF00428591
  14. Kuo, Y. C., W. J. Tsai, M. S. Shiao, C. F. Chen and C. Y. Lin (1996) Cordyceps sinensis as an immunomodulatory agent. Am. J. Chin. Med. 24, 111-125 https://doi.org/10.1142/S0192415X96000165
  15. Lee, E. H., N. S. Park, S. B. Park, H. O. Lee, C. S. Lee, B. R. Jin and S. M. Lee (2001a) Effects of photoperiods on the growth of the entomopathogenic fungi, Paecilomyces japonica, during the production of the silkworm-dongchunghacho, silkworm vegetable wasp and plant worm. Int. J. Indust. Entomol. 2, 83-86
  16. Lee, S. M., N. S. Park, S. Y. Cho, J. S. Hwang and B. R. Jin (2001b) Production of the wild entomopathogenic fungi, Cordyceps militaris, in the silkworm, Bombyx mori. Int. J. Indust. Entomol. 3, 105-108
  17. Malinowski, D. P. and I. Fridovich (1979) Chemical modification of arginine at the active site of the bovine erythrocyte superoxide dismutase. Biochemistry 18, 5909-5917 https://doi.org/10.1021/bi00593a023
  18. McCord, J. M. and I. Fridovich (1969) The utility of superoxide dismutase in studying free radical reactions. I. Radicals generated by the interaction of sulfite, dimethyl sulfoxide, and oxygen. J. Biol. Chem. 244, 6056-6063
  19. Montefiori, D. C., R. W. Sobol Jr., S. W. Li, N. L. Reichenbach, R. J. Suhadolnik, R. Charubala, W. Pfleiderer, A. Modliszewski, W. E. Robinson Jr. and W. M. Mitchill (1989) Phosphorothioate and cordycepin analogues of 2',5'-oligoadenylate: Inhibition of human immunodeficiency type I reverse transcriptase and infection in vitro. Proc. Natl. Acad. Sci. USA 86, 7191-7194 https://doi.org/10.1073/pnas.86.18.7191
  20. Moore, S., O. M. H. de Vries and P. Tudzynski (2002) The major Cu, Zn SOD of the phytopathogen Claviceps purpurea is not essetial for pathogenicity. Mol. Plant Pathol. 3, 9-22 https://doi.org/10.1046/j.1464-6722.2001.00088.x
  21. Nakamura, K., Y. Yamaguchi, S. Kagota, Y. M. Kwon, K. Shinozuka and M. Kunitomo (1999) Inhibitory effect of Cordyceps sinensis on spontaneous liver metastasis on Lewis lung carcinoma and B16 melanoma cells in syngeneic mice. Jpn J. Pharmacol. 79, 335-341 https://doi.org/10.1254/jjp.79.335
  22. Oberegger, H., I. Zadra, M. Schoeser and H. Haas (2000) Iron starvation leads to increased expression of Cu/Zn-superoxide dismutase in Aspergillus. FEBS Lett. 485, 113-116 https://doi.org/10.1016/S0014-5793(00)02206-7
  23. Park, N. S., K S. Lee, H. D. Sohn, D. H. Kim, S. M. Lee, E. Park, I. Kim, Y. H. Je and B. R Jin (2005) Molecular cloning, expression and characterization of the CU, Zn superoxide dismutase (SOD1)gene from the entomopathogenic fungus Cordyceps militaris. Mycologia In Press
  24. Parker, M. W., F. Bossa, D. Barra, W. H. Bannister and J. V. Bannister (1986) Structural and evolutionary relationships between the eukaryotic superoxide dismutases. Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine. Rotilio, G. (ed.), pp. 237-245, Elsevier Sci. Publ. BV, Amsterdam
  25. Samson, R., C. Evans and J. P. Large (1988) Atlas of entomopathogenic fungi. Springer-verlag, Berlin
  26. Shimizu, D. (1997) Ilusltrated vegetable wasps and plant worms. Seibundo Shinko-sha, Tokyo
  27. Steinman, H. M. (1980) The amino acid sequence of copperzinc superoxide dismutase from Bakers' yeast. J. Biol. Chem. 255, 6758-6765
  28. Swofford, D. L. (2000) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), Version 4, Sinauer Sunderland, MA
  29. Tainer, J. A. E., D. Getzoff, K. M. Beem, J. S. Richardson and D. C. Richardson (1982) Determination and analysis of the 2A structure of copper, zinc superoxide dismutase. J. Mol. Biol. 160, 181-217 https://doi.org/10.1016/0022-2836(82)90174-7
  30. Xu, R. H., X. E. Peng, G. Z. Chen and G. L. Chen (1992) Effects of Cordyceps sinensis on natural killer activity and colony formation of B16 melanoma. Chin. Med. J. 105, 97-101
  31. Yamada, H. (1984) Structure and antitumor activity of an alkali-soluble polysaccharides from Cordyceps ophiglossoides. Carbohydr. Res. 125, 107-115 https://doi.org/10.1016/0008-6215(84)85146-0
  32. Yamaguchi, Y, S. Kagota, K. Nakamura, K. Shinozuka and M. Kunitomo (2000) Antioxidant activity of the extracts from fruiting bodies of cultured. Phytother. Res. 14, 647-649 https://doi.org/10.1002/1099-1573(200012)14:8<647::AID-PTR670>3.0.CO;2-W
  33. Zhu, J. S., G. M. Halpern and K. Jones (1998a) The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: Part I. J. Altern. Complement Med. 4, 289-303 https://doi.org/10.1089/acm.1998.4.3-289
  34. Zhu, J. S., G. M. Halpern and K Jones (1998b) The scientific rediscovery of a precious ancient Chinese herbar regimen: Cordyceps sinensis: Part II. J. Altern. Complement Med. 4, 429-457 https://doi.org/10.1089/acm.1998.4.429