Transcriptional Activation of CuIZn Superoxide Dismutase And Catalase Genes by Panaxadiol Ginsenosides Extracted From Panax ginseng

  • Chang, Mun-Seog (Department of Molecular Biology and Research Center for Cell Differentiation Seoul National University) ;
  • Yoo, Hae-Yong (Department of Molecular Biology and Research Center for Cell Differentiation Seoul National University) ;
  • Rho, Hyune-Mo (Department of Molecular Biology and Research Center for Cell Differentiation Seoul National University)
  • Published : 1998.06.01

Abstract

Superoxide dismutase (SOD) and catalase constitute the first coordinated unit of defense against reactive oxygen species. Here, we examined the effect of ginseng saponins on the induction of SOD and catalase gene expression. To explore this possibility, the upstream regulatory promoter region of Cu/Zn superoxide dismutase (SODI) and catalase genes were linked to the chloramphenicol acetyl-transferase (CATI structural gene and introduced into human hepatoma HepG2 cells. Total saponin and panaxatriol did not activate the transcription of SODI and catalase genes but panaxadiol increased the transcription of these genes about 2-3 fold. Among the Panaxadiol ginsenosides, the Rb2 subtraction appeared to is a major induce of SODI and catalase genes. Using the deletion analyses and mobility shift assays, we showed that the 5051 gene was greatly activated by ginsenoside Rba through transcription factor AP2 binding sites and its induction. We also examined the effect of the content ratio of panaxadiol extracted from various compartment of ginseng on the transcription of 5031 gene. Saponin extract that contains 2.6-fold more PD than PT from the fine root Increased the SODI induction about 3-fold. These results suggest that the panaxadiol fraction and its ginsenosides could induce the antioxidant enzymes, which are important for maintaining cell viability by lowering level of oxygen radical generated from intracellular metabolism.

Keywords