• Title/Summary/Keyword: Supercritical $CO_2$

Search Result 413, Processing Time 0.03 seconds

Pressure Gradient of Supercritical CO2 in Vertical Tobacco Beds in Down Flow Condition (담배 고정층 반응기에서 하부로 흐르는 초임계 CO2의 압력 구배)

  • 이성철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.1
    • /
    • pp.92-99
    • /
    • 1996
  • A mathematical model of the pressure gradient of supercritical CO2 in a vertical tobacco bed was developed in this study. In particular, the compaction of the tobacco as a function of temperature and CO2 flow is included in the model. Downflow of CO2 (low condition is described. At velocities in excess of 0.6 cm/sec at 7$0^{\circ}C$, there is a large increase in pressure gradient for beds deeper than about 0.5 m. The proposed model offers a better understanding of operating the process using supercritical CO2.

  • PDF

Development of New Separation Technique, Modifier Composition Programming in Supercritical Fluid Chromatography (초임계 유체 크로마토그래피에서 새로운 분리방식인 변형제 조성 프로그래밍법 개발)

  • Kim, Hohyun;Pyo, Dongjin
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.350-356
    • /
    • 1997
  • Supercritical Fluid Chromatography(SFC) has been developed as an analytical technique for the compounds that is difficult to analyze by conventional chromatography. Since supercritical fluid $CO_2$ is difficult to elute solutes with high polarity, modified supercritical $CO_2$, was used as a mobile phase. In conventional method, silica column which is saturated with modifier was used. However, with this method, we can not control the quantity of modifier. In this paper, we developed a new method which can control quantity of modifier mixed in supercritical fluid $CO_2$. The quantity of $H_2O$ mixed was measured with amperometric microsensor which was made by perflurosulfonate ionomer(PFSI) film. we have also obtained a good supercritical fluid chromatogram of PAH mixture by use of a modifier composition programming method.

  • PDF

DEVELOPMENT OF A SUPERCRITICAL CO2 BRAYTON ENERGY CONVERSION SYSTEM COUPLED WITH A SODIUM COOLED FAST REACTOR

  • Cha, Jae-Eun;Lee, Tae-Ho;Eoh, Jae-Hyuk;Seong, Sung-Hwan;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan;Kim, Tae-Woo;Suh, Kyun-Yul
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1025-1044
    • /
    • 2009
  • Systematic research has been conducted by KAERI to develop a supercritical carbon dioxide Brayton cycle energy conversion system coupled with a sodium cooled fast reactor. For the development of the supercritical $CO_2$ Brayton cycle ECS, KAERI researched four major fields, separately. For the system development, computer codes were developed to design and analyze the supercritical $CO_2$ Brayton cycle ECS coupled with the KALIMER-600. Computer codes were developed to design and analyze the performance of the major components such as the turbomachinery and the high compactness PCHE heat exchanger. Three dimensional flow analysis was conducted to evaluate their performance. A new configuration for a PCHE heat exchanger was developed by using flow analysis, which showed a very small pressure loss compared with a previous PCHE while maintaining its heat transfer rate. Transient characteristics for the supercritical $CO_2$ Brayton cycle coupled with KALIMER-600 were also analyzed using the developed computer codes. A Na-$CO_2$ pressure boundary failure accident was analyzed with a computer code that included a developed model for the Na-$CO_2$ chemical reaction phenomena. The MMS-LMR code was developed to analyze the system transient and control logic. On the basis of the code, the system behavior was analyzed when a turbine load was changed. This paper contains the current research overview of the supercritical $CO_2$ Brayton cycle coupled to the KALIMER-600 as an alternative energy conversion system.

Changes in The Chemical Composition of Apple Slices Pretreated with Supercritical Carbon Dioxide (건조 전처리 방법으로써 초임계 이산화탄소가 사과절편의 화학적 성분에 미치는 영향)

  • Lee, Bo-Su;Lee, Won-Young
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.256-260
    • /
    • 2010
  • We investigated changes in the chemical composition of apple slices after pretreatment with supercritical $CO_2$. Total phenolic levels increased with increasing temperature, although the concentrations were lower in pretreated material than in fresh or untreated slices. The levels of vitamin C and malic acid in pretreated slices were also lower than in untreated or fresh apple slices. Little difference was evident among various pretreatmentconditions. It was found that supercritical $CO_2$ served not as a solvent but rather as a means of tissue compression. Supercritical $CO_2$ compressed the apple slices, causing juice to be extruded. The juice disappeared when the supercritical $CO_2$ pressure was released.

High-pressure rheology of polymer melts containing supercritical carbon dioxide

  • Lee Sang-Myung;Han Jae-Ro;Kim Kyung-Yl;Ahn Young-Joon;Lee Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2006
  • Supercritical carbon dioxide ($scCO_2$) has advantages of being incorporated in polymer with high solubility and of being recovered easily by depressurizing. $scCO_2$ reduces the viscosity of polymer melt and it is expected to be use as a plasticizing agent. In this work, we studied on the effect of $scCO_2$ on the rheological properties of polymer melts during extrusion process. Slit die attached to twin screw extruder was used to measure the viscosity of polymer melts plasticized by supercritical $CO_2$. A gas injection system was devised to accurately meter the supercritical $CO_2$ into the extruder barrel. Measurements of pressure drop within the die, confirmed the presence of a one phase mixture and a fully developed flow during the measurements. The viscosity measurement of polypropylene was performed at experimental conditions of various temperatures, pressures and $CO_2$ concentrations. We observed that melt viscosity of polymer was dramatically reduced by $CO_2$ addition.

Drying Characteristics of Apple Slabs after Pretreatment with Supercritical CO2

  • Lee, Bo-Su;Choi, Yong-Hee;Lee, Won-Young
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.261-266
    • /
    • 2011
  • Supercritical $CO_2$ pretreatment before dehydration leads to a faster dehydration rate. The best supercritical $CO_2$ pretreatment conditions for the most effective dehydration were $45^{\circ}C$, 25 MPa and $55^{\circ}C$, 25 MPa. Increasing pressure of the supercritical $CO_2$ pretreatment system tended to accelerate the dehydration rate more than increasing temperature did. Samples pretreated at higher temperatures and pressures showed greater shrinking and pore distribution on scanning electron microscopy. Control samples maintained their cell walls, whereas samples pretreated at higher temperatures and pressures showed more cell disruption, and more pores were observed. Pore sizes of control and pretreated samples were about 100 and $70{\sim}80\;{\mu}m$, respectively. Samples pretreated at higher temperatures and pressures had smaller pores and a denser distribution.

A Fundamental Study on Supercritical CO2 Curing of Resource-Recycling Concrete Containing Concrete Sludge Waste as Main Materials (레미콘 슬러지 고형분을 주재료로 한 자원순환형 콘크리트의 초임계 CO2 양생에 관한 기초적 연구)

  • Sim, Sang-Rak;Lee, Young-Do;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.27-28
    • /
    • 2022
  • In this study, the mechanical properties of resource-recycling concrete containing concrete sludge waste as main materials was compared depending on whether supercritical CO2 curing was applied for the realization of CCU technology. After supercritical CO2 curing, the compressive strength of the steam-cured specimen was lowered, but it was confirmed that the compressive strength of the underwater-cured specimen was improved.

  • PDF

Effect of Added Supercritical CO2 on the Characteristics of Copper Electroless Plating on PET Film Substrate (PET 필름기재의 구리 무전해도금에 있어서 초임계 CO2 유체가 도금 특성에 미치는 영향)

  • Lee, Hee-Dai;Kim, Moon-Sun;Kim, Chul kyung
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.384-390
    • /
    • 2007
  • In this study, electroless plating of copper was performed on PET film by using the blend of supercritical $CO_2$ and plating solution. The optimum volumetric ratio of supercritical fluid and plating solution was found to be 1:9 and dispersion property was poor at $CO_2$ vol% langer than 10%. Electroless plating of copper was best at $25^{\circ}C$ and 15 MPa. Role of added supercritical $CO_2$ is not to increase solubility but to disperse and maintain Cu-particles as the 1st particles.

A Study on Dyeing Properties of Nylon 6 Fabrics in Supercritical Fluid Dyeing System (I): Depending on Temperature and Pressure (Nylon 6 섬유의 초임계 유체 염색특성 연구 (I): 온도, 압력의 변화)

  • Ko, Eunhee;Lee, Inyeol;Kim, Changil
    • Textile Coloration and Finishing
    • /
    • v.32 no.2
    • /
    • pp.80-88
    • /
    • 2020
  • Supercritical fluid dyeing is a new alternative to the conventional aqueous process because of its environmental benefits. In this study, dyeing properties of Nylon 6 fabrics were investigated depending on dyeing temperature and pressure in supercritical CO2 fluid dyeing system. In order to select the optimal condition for supercritical fluid dyeing of Nylon 6 fabrics, dyeing temperature and pressure were varied from 100, 110, 120℃, 200, 230, 260bar, respectively. The results of K/S values and levelling properties showed that the optimal dyeing condition for Nylon 6 fabrics was 110℃ and 230bar in the supercritical CO2 fluid dyeing system. The washing fastness ratings of the dyed Nylon 6 fabrics under supercritical medium were good for both fading and staining except for staining on nylon.

The Current Status of Supercritical Fluid Extraction Technology and Industrial Applications (초임계유체 추출 기술 및 상업화 현황)

  • Ju Young-Woon;Lee Moon Young;Woo Moon Jea;Byun Sang Yo
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.329-337
    • /
    • 2005
  • Because of their unique properties, supercritical fluids have been known as one of the most promising materials for the future technology. Supercritical fluid technologies have been widely applied to various operations such as extraction, impregnation, nano-particle generation, oxidation, reaction etc. Industrial applications, especially their successful usage of supercritical fluid, have been reviewed. A special case for the first successful industrial application of supercritical $CO_2$ extraction in Korea was reviewed. Its unique characteristics of enriched antioxidant, $'\grmma-tocopherol'$ enabled this industrial application in Korea in spite of its low market price. Also its size and operation conditions were known as world records.