• Title/Summary/Keyword: Superconducting critical temperature

Search Result 382, Processing Time 0.027 seconds

Degradation characteristics of 2G HTS tapes with respect to an electrical breakdown

  • Kang, Jong O;Lee, Onyou;Mo, Young Kyu;Kim, Junil;Bang, Seungmin;Lee, Hongseok;Lee, Jae-Hun;Jang, Cheolyeong;Kang, Hyoungku
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.1
    • /
    • pp.48-52
    • /
    • 2015
  • The electrical insulation design for a superconducting coil system is important for developing high voltage superconducting apparatuses. Also, the degraded characteristics of superconducting tapes due to an electrical breakdown should be considered for superconducting coils design. In this study, the degradation characteristics of 2G high temperature superconducting (HTS) tapes were studied with respect to electrical breakdown tests. The degradation tests of 2G HTS tapes were performed with various stabilizer materials. The degradation characteristics of 2G HTS tapes such as critical current(Ic) and index number were observed by performing electrical breakdown tests. It was found that the characteristics such as Ic and index number can be degraded by an electrical breakdown. Moreover, it was concluded that the degradation characteristics of 2G HTS tapes were affected by a stabilizer material and applied breakdown voltage. The cross sectional view of 2G HTS tapes was observed by using a scanning electron microscope (SEM). As results, it is found that the degradation characteristics of 2G HTS tapes are concerned with hardness and electrical resistivity of stabilizer layers.

The Analysis of The Transport Current Property Depend on The Fault Angle of BSCCO HTS Cable (초전도 케이블용 BSCCO의 사고각에 따른 통전특성 분석)

  • Lee, Dong-Hyeok;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.367-368
    • /
    • 2009
  • BSCCO HTS(High Temperature Superconductor) could be applied to superconducting cable, magnet and motor, using its hight critical properties. Especially, superconducting cable has a hight possibility of practical use due to the possibility of low voltage and high capacity transmission caused by its lower power loss than copper cable. In this paper, the transport characteristics of BSCCO superconducting cable, according to the change of BSCCO superconducting cable's accident point at phase $0^{\circ}$ and $45^{\circ}C$, were analyzed and compared each other. Consequently, when the accident was occur the resistance of the HTS was higher at the point phase $0^{\circ}$ than $45^{\circ}$ which means it will cause much higher load on the HTS.

  • PDF

A Study on Characterization of Thick Film used as Superconducting Fault Current Limiter (고온 초전도 전류제한기용 후막의 특성 연구)

  • 조동언;박경국;김동원;정길도;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.12
    • /
    • pp.1139-1145
    • /
    • 1998
  • In this paper, to fabricate a superconducting fault current limiter(FCL) of thick film type, $YBa_2Cu_3O_X superconducting thick films were fabricated by surface diffusion process using the screen printing method. Powder mixture of $3BaCuO_2$+2CuO was screen printed on $Y_2BaCuO_5$(d=15mm). And critical current densities of the thick films were observed as the sintering temperature(92$0^{\circ}C$~95$0^{\circ}C$) and holding time(2h~10h). Based on experimental data, the thick films for superconducting FCL were sintered at $940^{\circ}C$ in 2 hours. The superconducting FCL with a current limiting area of 1mm wide and 66mm long was prepared on $Y_2BaCuO_5$ substrate. To measure the characterization of the fabricated FCL, an alternating voltage (60Hz) was applied to the FCL in 77K liquid nitrogen. At an applied voltage of 4V, the FCL was limited from 20A into 0.6A not farther than 0.5ms.

  • PDF

Effects of Sintering Temperature and SiC Contents on the Microstructure and Superconducting Properties of In-situ $MgB_2$ Wires (In-situ $MgB_2$ 선재의 소결온도와 SiC 함량에 따른 미세조직 및 초전도 특성 연구)

  • Hwang, Soo-Min;Park, Eui-Cheol;Park, Si-Hong;Jang, Seok-Hern;Kim, Kyu-Tae;Lim, Jun-Hyung;Joo, Jin-Ho;Kang, Won-Nam;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2007
  • We fabricated the in-situ $MgB_2$ wires using the powder-in-tube method and investigated the effects of sintering temperature and SiC contents on the microstructure and superconducting properties. Pure $MgB_2$ wires and 5, 10, 20 wt.% SiC doped $MgB_2$ wires were sintered at $600-1000^{\circ}C$ for 30 minutes in Ar atmosphere. We found that $MgB_2$ phase was mostly formed at the sintering temperature of $700^{\circ}C$ and above, and the critical temperature ($T_c$) increased with increasing sintering temperature. For the $MgB_2$ sintered at $850^{\circ}C$, the highest critical current density ($J_c$) was obtained to be $3.7{\times}10^5\;A/cm^2$ at 5 K and 1.6 T by a magnetic properties measurement system (MPMS). The addition of SiC to the $MgB_2$ wires changed microstructure and critical properties. SEM observation showed that the $MgB_2$ core had considerable micro-cracks in undoped wire and the density of micro-cracks decreased with increasing SiC contents. The critical temperature decreased as the SiC contents increased, on the other hand, the critical current density of SiC doped $MgB_2$ wires in high magnetic field was enhanced compared to that of undoped $MgB_2$ wires.

  • PDF

Shape Optimization of the Magnet for Superconducting Motor by Using RSM (반응표면법을 이용한 초전도 전동기의 마그넷 형상 최적화)

  • 이지영;김성일;김영균;홍정표;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.18-21
    • /
    • 2004
  • This paper presents the optimization for shape design of a field coil used High Temperature Superconducting Motor (HTSM). In materials of HTSM, critical current Ic is more sensitive to magnetic fields directed along the axis or the unit cell ($B_{\bot}$). Thus, in the shape design of the HTS magnet. the maximum $B_{\bot}$ should be reduced to limit Ic. In order to reduce the maximum $B_{\bot}$, the shape optimization of the magnet, which is used for the field coil of HTSM, is necessary. It can be accomplished by using Response Surface Methodology (RSM). Finally, the result of RSM is verified by comparison with these experimental results.

Preparation of Electrophoretic deposited YBCO superconducting film with alcohol-based suspension (알코올계 이용한 YBCO 초전도 전기영동전착막의 제작)

  • Soh, Dea-Wha;Park, Jung-Cheol;Chu, Soon-Nam;Jeon, Yong-Woo;Cho, Yong-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.1-4
    • /
    • 2001
  • In electrophoresis, it is studied to get best condition of suspension media with alcoholic system for superconducting film. High-temperature superconductor films of $YBa_{2}Cu_{3}O_{7-x}$ were fabricated by electrophoretic deposition(EPD) from alcohol-based suspension. Maximum stability is observed for the suspension containing iso-alcohol as dispersion medium. However, for the formation of a dense and adherent coating of YBCO on a silver substrate by EPD. the best results were obtained in mixing PrOH and BuOH suspension. The superconducting critical current density($J_c$) was $1,200A/cm^2$ for the films deposited in 30% iso-PrOH and 70 % iso-BuOH suspension.

  • PDF

A Study on Design, Fabrication Techniques and Test Results of 1.2kV 180A Inductive Superconducting Fault Current Limiter by Conduction-Cooled System (전도냉각에 의한 1.2 KV/80 A급 유도형 고온초전도 한류기의 설계, 제작 및 테스트에 관한 연구)

  • 강형구;전우용;이승제;안민철;배덕권;윤용수;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.30-35
    • /
    • 2003
  • The inductive superconducting fault current limiter (SFCLJ limits the fault current with its dc reactor. To fabricate the optimal dc reactor for inductive SFCL, several design and manufacturing technologies are necessary. In this paper, the manufacturing technology for dc reactor and cryogenic cooling method are described in detail. GM-cryocooler was used enlarge the critical current of dc reactor by cooling down the temperature of dc reactor about 20 K. Moreover, the results of short circuit test were described. Finally, the thermal characteristics of conduction-cooled system were discussed and then, sub-cooled nitrogen system was proposed to enhance the thermal stability of dc reactor.

Effect of Ball-Milling on the Superconducting Properties of C and C-Based Compound Doped $MgB_2$ (탄소 및 탄소화합물이 도핑된 $MgB_2$ 초전도체의 볼밀링 효과)

  • Ahn, Jung-Ho;Jang, Min-Kyu;Oh, Sang-Jun
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • We have examined the effect of ball-milling on the superconducting properties of $MgB_2$ doped with C. The ball-milling of pre-reacted $MgB_2$ powder was carried out in dry or wet state using C or diethylenetriamine ($C_{4}H_{13}N_3$) as additives. The diethylenetriamine, whose chemical formula contains no oxygen, was chosen to avoid an excess oxidation during doping. The superconducting transition temperature (Tc) of the ball-milled or doped $MgB_2$ powders was only slightly smaller than that of undoped $MgB_2$. The critical current density (Jc) of the highly ball-milled $MgB_2$ was higher than that of C-doped $MgB_2$. The addition of diethylenetriamine was detrimental to Jc, although Tc was almost unchanged.

  • PDF

Optimum Radial Build of a Low Aspect Ratio Tokamak Reactor

  • Hong, B.G.;Hwang, Y.S.;Kang, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.397-397
    • /
    • 2011
  • In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the radial build of TF coil and the shield play a key role in determining the size of a reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with one-dimensional radiation transport code. Conceptual design study of a compact superconducting LAR tokamak reactor with aspect ratio less than 2.5 was conducted and the optimum radial build was identified. It is shown that the use of an improved shielding material and high temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at low aspect ratio, and that by using an inboard neutron reflector instead of breeding blanket, tritium self-sufficiency is possible with outboard blanket only and thus compact sized reactor is viable.

  • PDF

Electromagnetic Field Analysis Of High Temperature Superconducting Cable (고온초전도 케이블의 전자계 해석)

  • 조영식;홍정표;정종만;조전욱;성기철;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.60-62
    • /
    • 2000
  • It is widely acknowledged that the value of critical current in High Temperature Superconducting (HTS) tape has a great influence on B. Therefore, when HTS cable is designed, a method to reduce the B should be considered in order to improve the capacity. This paper deals with the influence of the space between each HTS tape by using 2D analytical method. From the analysis results, it is found that the decrease of the space causes the decrease of B. Moreover, another HTS cable, which has a very small space, is analyzed by 3D analytical method and it is manufactured. The validity of these analysis results are verified by comparison with experimental results.

  • PDF