• Title/Summary/Keyword: Sump water

Search Result 42, Processing Time 0.024 seconds

A Hydraulic Model Stydy of the Water-Intake Structure near River Mile 37 on the Missouri River

  • Byungman-Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.133-141
    • /
    • 1992
  • A three water-intake structure designed to built along the right bank of the Missouri River near Chesterfield, Missouri was model-tested at an undistorted scale of 1:5. Although the discharge capacity of each of six pumps to be installed is only 21,000 gpm, the model indicated strong flow circuation and unstable free-surface conditions as flow entered the two-pump bay through a narrow sluice opening at an angle. Strong free-surface vartices were also observed in the model. The sump modifications developed in the study included an array of baffle bars, a perforated plate, floor splitters, and floor-corner fillets. The solutions developed in this study could be applied to other pump sumps with multiple pump units.

  • PDF

On Vortex Reduction Characteristics of Pump Sump Circulating Water Intake Basin of Power Plant Using Hydraulic Experiment (수리실험을 이용한 발전소의 순환수 취수부 흡입수조의 와류저감에 관한 연구)

  • Eom, Junghyun;Lee, Du Han;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.815-824
    • /
    • 2022
  • Among the main facilities of the power plant, the circulating water used for cooling the power generation system is supplied through the Circulation Water Intake Basin (CWIB). The vortexes of various types generated in the Pump Sump (PS) of CWIB adversely affect the Circulation Water Pump (CWP) and pipelines. In particular, the free surface vortex accompanied by air intake brings about vibration, noise, cavitation etc. and these are the causes of degradation of CWP performance, damage to pipelines. Then power generation is interrupted by the causes. Therefore, it is necessary to investigate the hydraulic characteristics of CWIB through the hydraulic model experiment and apply an appropriate Anti Vortex Device (AVD) that can control the vortex to enable smooth operation of the power plant. In general, free surface vortex is controlled by Curtain Wall (CW) and the submerged vortex is by the anti vortex device of the curtain wall. The detailed specifications are described in the American National Standard for Pump Intake Design. In this study, the circulating water intake part of the Tripoli West 4×350 MW power plant in Libya was targeted, the actual operating conditions were applied, and the vortex reduction effect of the anti vortex device generated in the suction tank among the circulating water intake part was analyzed through a hydraulic model experiment. In addition, a floor splitter was basically applied to control the submerged vortex, and a new type of column curtain wall was additionally applied to control the vortex generated on the free surface to confirm the effect. As a result of analyzing the hydraulic characteristics by additionally applying the newly developed Column Curtain Wall (CCW) to the existing curtain wall, we have found that the vortex was controlled by forming a uniform flow. In addition, the vortex angle generated in the circulating water pump pipeline was 5° or less, which is the design standard of ANSI/HI 9.8, confirming the stability of the flow.

Modifications to Hydraulic Structures for Anti-submerged Vortex in a Multi Pump Intake using CFD simulation Technique (수리구조 개선을 통한 다중 펌프 흡수정에서 발생하는 보텍스 방지 대책 수립에 관한 연구)

  • Park, No-Suk;Kim, Seong-Su;Jeong, Woo-Chang;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • In order to suggest the methodology for achieving anti-vortex device within multi pump intake well, CFD(Computational Fluid Dynamics) simulation were conducted for two alternative suggestions. Multi-intake sump model with anti-vortex device basins were designed and the characteristics of submerged vortex were investigated in the flow field by numerical simulation. From the results of simulations, to install the horizontal plate and vertical cross plates within basins were effective for preventing air-induction vortex.

A Study of the Velocity Distribution and Vorticity Measurement in the Pump Sump Using PIV (PIV를 이용한 흡수조 내 유속분포 및 와류강도 측정에 대한 연구)

  • Byeon, Hyun Hyuk;Kim, Seo Jun;Yoon, Byung Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • The climate change occurring all over the world increases the risk, specially in urban area, Accordingly, rainwater pumping station expansion is required than before. In order to increase the efficiency of the rainwater pumping station, the analysis of flow characteristics in the pump sump is needed for vortex control. Many efforts have been made to illuminate the vortex behavior using PIV, but any reliable results have not been obtained yet, because of the limitations in image capturing and dependency of measured velocity values on the interrogation area and time interval used for velocity calculation. In this study, therefore, experiments were carried out to find out the limitation of PIV and estimate the validation of the velocity values associated with the analysis parameters such as interrogation area, time interval, grid size. For the experimental condition used in this study, the limitation of PIV and the effects of parameters on the velocity estimation are presented.

Chemical Effects on Head Loss across Containment Sump Strainer under Post-LOCA Environment (LOCA이후 환경에서 원자로건물집수조 여과기의 수두손실에 대한 화학적 영향)

  • Ku, Hee-Kwon;Jung, Bum-Young;Hong, Kwang;Jeong, Eun-Sun;Jung, Hyun-Jun;Park, Byung-Gi;Rhee, In-Hyoung;Park, Jong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3260-3268
    • /
    • 2009
  • A test apparatus has been fabricated to simulate chemical effect on head loss through a strainer in a pressurized water reactor (PWR) containment water pool after a loss of coolant accident (LOCA). Tests were conducted under condition of same ratio of strainer surface area to water volume between the test appratus and the containment sump. A series of tests have been performed to investigate the effects of spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the test screen is strongly affected by spray duration and is increased rapidly at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKONTM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

Performance Test of Vortex-Disc Skimmers (Vortex-Disc형 유회수기의 성능평가)

  • Yu J.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.95-102
    • /
    • 1999
  • Various types of oil response equipments and oil recovery vessels are being developed in Korea from the 1990s to respond nil spill accidents. It should be considered prior to the selection of the oil skimmers to make the oil recovery system more efficient at early stage of oil spill accidents. Rotating baldes of vortex skimmer beneath the water surface concentrate oil and draw it into the weir, where it flows to a collection sump. In this study a recently developed Vortex-Disc skimmer(model : VDS-50) is introduced and the performance test results for the skimmer are discussed.

  • PDF

Effect of Change of Reactor Coolant Injection Method on Risk at Loss of Coolant Accident due to Beam Tube Rupture (빔튜브파단 냉각재상실사고시 원자로냉각수 보충방법 변경이 리스크에 미치는 영향)

  • Lee, Yoon-Hwan;Lee, Byeonghee;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.129-138
    • /
    • 2022
  • A new method for injecting cooling water into the Korean research reactor (KRR) in the event of beam tube rupture is proposed in this paper. Moreover, the research evaluates the risk to the reactor core in terms of core damage frequency (CDF). The proposed method maintains the cooling water in the chimney at a certain level in the tank to prevent nuclear fuel damage solely by gravitational coolant feeding from the emergency water supply system (EWSS). This technique does not require sump recirculation operations described in the current procedure for resolving beam tube accidents. The reduction in the risk to the core in the event of beam tube rupture that can be achieved by the proposed change in the cooling water injection design is quantified as follows. 1) The total CDF of the KRR for the proposed design change is approximately 4.17E-06/yr, which is 8.4% lower than the CDF of the current design (4.55E-06/yr). 2) The CDF for beam tube rupture is 7.10E-08/yr, which represents an 84.1% decrease compared with that of the current design (4.49E-07/yr). In addition to this quantitative reduction in risk, the modified cooling water injection design maintains a supply of pure coolant to the EWSS tank. This means that the reactor does not require decontamination after an accident. Thermal hydraulic analysis proves that the water level in the reactor pool does not cause damage to the nuclear fuel cladding after beam tube rupture. This is because the amount of water in the chimney can be regulated by the EWSS function. The EWSS supplies emergency water to the reactor core to compensate for the evaporation of coolant in the core, thus allowing water to cover the fuel assemblies in the reactor core over a sufficient amount of time.

Analysis on Chemical Ingredients with Anti-microbial Activity in Water-based Metalworking Fluids

  • Park, Dong-Uk;Kim, Bok-Hwan;Lee, Kwon-Sup
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.217-222
    • /
    • 2004
  • This study was conducted to estimate if the level of several chemical ingredients including alkanolamines or ethanolamines (EA) examined in the specific synthetic metalworking fluid (MWF) ‘A’ can cause anti-microbial activity and health effect. Three water-based MWF products (‘A’, ‘B’, and ‘C’) were studied every week for two months. Chemical ingredients such as formaldehyde, boron, EA, and copper were examined. In the sump where MWF ‘A’ was used, not only the total level of EA, monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA), but also boron level were significantly higher than those of the other MWFs. ANOVA statistical tests indicated that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF ‘A’ were significantly higher than those in other MWF types. Correlation tests also found that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF ‘A’ are significantly correlated. We suggested the assumptions that excessive concentrations of EA, and borate at a high pH level, may cause anti-microbial resistance synergically. To demonstrate this assumption, additional study is needed to examine the relationship between the levels of microbes and excessive concentrations of EA, and borate at a high pH level.

  • PDF

Assessment guideline for the safe use of metalworking fluids - Focused on water-soluble metalworking fluids (기계가공 공정에서 금속가공유 관리에 대한 평가지침 -수용성 금속가공유를 중심으로-)

  • Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • This technical report was developed to suggest the guideline to assess the safe use and handling metalworking fluids (MWFs) in machining operation. The basis of this method developed in this study was based on self assessment procedure recommended by Organization Resources Counselors (ORC) of the United States (US). In addition, various MWF management elements obtained from the review on various articles, reports and author's experience regarding MWF were newly added to the evaluation guideline. A total of four areas were finally selected in order to control exposure to MWF used in machining operations. They are all related to the presence and efficiency of the control measures, exposure assessment, management on tank and sump, and safe treatment of chips and metal fines generated during machining operations. Each area is consisted of several related elements. Several evaluation areas and elements used in this study could be revised, replaced, added and deleted according to the process environment, evaluation objectives and evaluator's (manager) criteria etc. This evaluation guide manual could be used for safe management of MWF in metalworking operation. In addition, industrial hygienists can use this evaluation method for auditing and evaluating the management status on MWF.

Analysis on Chemical Ingredients with Anti-microbial Activity in Water-based Metalworking Fluids

  • Park, Donguk;Lee, Jonghang;Lee, Kwonsup
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.52-55
    • /
    • 2003
  • This study was conducted to estimate if the level of several chemical ingredients including alkanolamines or ethanolamines (EA) examined in the specific synthetic metalworking fluid (MWF) "A" can cause anti-microbial activity and health effect. Three water-based MWF products ("A", "B", and "C") were studied every week for two months (from June 1, 2002 to July 30, 2002). Chemical ingredients such as formaldehyde, boron, EA, and copper were examined. In the sump where MWF "A" was used, not only the total level of EA, monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA), but also boron level were significantly higher than those of the other MWFs. ANOVA statistical tests indicated that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF "A" were significantly higher than those in other MWF types. Correlation tests also found that levels of pH, alkalinity, boron, MEA, DEA and TEA in MWF "A" are significantly correlated. We suggested the assumptions that excessive concentrations of EA, and borate at a high pH level, may cause anti-microbial resistance synergically. To demonstrate this assumption, additional study is needed to examine the relationship between the levels of microbes and excessive concentrations of EA, and borate at a high pH level.