• Title/Summary/Keyword: Sum of divisor functions

Search Result 25, Processing Time 0.018 seconds

EVALUATION OF THE CONVOLUTION SUMS Σak+bl+cm=n σ(k)σ(l)σ(m), Σal+bm=n lσ(l)σ(m) AND Σal+bm=n σ3(l)σ(m) FOR DIVISORS a, b, c OF 10

  • PARK, YOON KYUNG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.813-830
    • /
    • 2022
  • The generating functions of the divisor function σs(n) = Σ0<d|n ds are quasimodular forms. In this paper, we find the basis of the space of quasimodular forms of weight 6 on Γ0(10) consisting of Eisenstein series and η-quotients. Then we evaluate the convolution sum Σak+bl+cm=n σ(k)σ(l)σ(m) with lcm(a, b, c) = 10 and Σal+bm=n lσ(l)σ(m) and Σal+bm=n σ3(l)σ(m) with lcm(a, b) = 10.

APPLICATION OF CONVOLUTION SUM ∑k=1N-1σ1(k)σ1(2nN-2nk)

  • Kim, Daeyeoul;Kim, Aeran
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.45-54
    • /
    • 2013
  • Let $$S^{\pm}_{(n,k)}\;:=\{(a,b,x,y){\in}\mathbb{N}^4:ax+by=n,x{\equiv}{\pm}y\;(mod\;k)\}$$. From the formula $\sum_{(a,b,x,y){\in}S^{\pm}_{(n,k)}}\;ab=4\sum_{^{m{\in}\mathbb{N}}_{m<n/k}}\;{\sigma}_1(m){\sigma}_1(n-km)+\frac{1}{6}{\sigma}_3(n)-\frac{1}{6}{\sigma}_1(n)-{\sigma}_3(\frac{n}{k})+n{\sigma}_1(\frac{n}{k})$, we find the Diophantine solutions for modulo $2^{m^{\prime}}$ and $3^{m^{\prime}}$, where $m^{\prime}{\in}\mathbb{N}$.

Estimable functions of mixed models (혼합모형의 추정가능함수)

  • Choi, Jaesung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.291-299
    • /
    • 2016
  • This paper discusses how to establish estimable functions when there are fixed and random effects in design models. It proves that estimable functions of mixed models are not related to random effects. A fitting constants method is used to obtain sums of squares due to random effects and Hartley's synthesis is used to calculate coefficients of variance components. To test about the fixed effects the degrees of freedom associated with divisor are determined by means of the Satterthwaite approximation.

CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES

  • Kim, Daeyeoul;Kim, Aeran;Sankaranarayanan, Ayyadurai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1389-1413
    • /
    • 2013
  • In this paper, we consider several convolution sums, namely, $\mathcal{A}_i(m,n;N)$ ($i=1,2,3,4$), $\mathcal{B}_j(m,n;N)$ ($j=1,2,3$), and $\mathcal{C}_k(m,n;N)$ ($k=1,2,3,{\cdots},12$), and establish certain identities involving their finite products. Then we extend these types of product convolution identities to products involving Faulhaber sums. As an application, an identity involving the Weierstrass ${\wp}$-function, its derivative and certain linear combination of Eisenstein series is established.

JACOBI'S THETA FUNCTIONS AND THE NUMBER OF REPRESENTATIONS OF A POSITIVE INTEGER AS A SUM OF FOUR TRIANGULAR NUMBERS

  • Kim, Aeran
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.753-782
    • /
    • 2016
  • In this paper we deduce the number of representations of a positive integer n by each of the six triangular forms as $${\frac{1}{2}}x_1(x_1+1)+{\frac{3}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+{\frac{1}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\x_1(x_1+1)+x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+{\frac{3}{2}}x_4(x_4+1),\\x_1(x_1+1)+{\frac{3}{2}}x_2(x_2+1)+{\frac{3}{2}}x_3(x_3+1)+3x_4(x_4+1),\\{\frac{1}{2}}x_1(x_1+1)+{\frac{1}{2}}x_2(x_2+1)+3x_3(x_3+1)+3x_4(x_4+1).$$