DOI QR코드

DOI QR Code

EVALUATION OF THE CONVOLUTION SUMS Σak+bl+cm=n σ(k)σ(l)σ(m), Σal+bm=n lσ(l)σ(m) AND Σal+bm=n σ3(l)σ(m) FOR DIVISORS a, b, c OF 10

  • PARK, YOON KYUNG (School of Liberal Arts, Seoul National University of Science and Technology)
  • Received : 2022.03.18
  • Accepted : 2022.06.18
  • Published : 2022.09.30

Abstract

The generating functions of the divisor function σs(n) = Σ0<d|n ds are quasimodular forms. In this paper, we find the basis of the space of quasimodular forms of weight 6 on Γ0(10) consisting of Eisenstein series and η-quotients. Then we evaluate the convolution sum Σak+bl+cm=n σ(k)σ(l)σ(m) with lcm(a, b, c) = 10 and Σal+bm=n lσ(l)σ(m) and Σal+bm=n σ3(l)σ(m) with lcm(a, b) = 10.

Keywords

Acknowledgement

This study was financially supported by NRF 2021R1F1A1055200.

References

  1. A. Alaca, S. Alaca and K.S. Williams, Evaluation of the convolution sums ∑l+12m=nσ(l)σ(m) and ∑3l+4m=nσ(l)σ(m), Adv. Theor. Appl. Math. 1 (2006), 27-48.
  2. A. Alaca, S. Alaca and K.S. Williams, Evaluation of the convolution sums ∑l+18m=nσ(l)σ(m) and ∑2l+9m=nσ(l)σ(m), Int. Math. Forum 2 (2007), 45-68. https://doi.org/10.12988/imf.2007.07003
  3. A. Alaca, S. Alaca and K.S. Williams, Evaluation of the convolution sums ∑l+24m=nσ(l)σ(m) and ∑3l+8m=nσ(l)σ(m), Math. J. Okayama Univ. 49 (2007), 93-111.
  4. A. Alaca, S. Alaca and K.S. Williams, The convolution sum ∑m<n/16σ(m)σ(n - 16m), Canad. Math. Bull. 51 (2008), 3-14. https://doi.org/10.4153/CMB-2008-001-1
  5. A. Alaca, S. Alaca and E. Ntienjem, The convolution sum ∑al+bm=nσ(l)σ(m) for (a, b) = (1, 28), (4, 7), (1, 14), (2, 7), (1, 7), Kyungpook Math. J. 59 (2019), 377-389. https://doi.org/10.5666/KMJ.2019.59.3.377
  6. S. Alaca and Y. Kesicioglu, Evaluation of the convolution sums ∑l+27m=nσ(l)σ(m) and ∑l+32m=nσ(l)σ(m), Int. J. Number Theory 12 (2016), 1-13. https://doi.org/10.1142/S1793042116500019
  7. S. Alaca and K.S. Williams, Evaluation of the convolution sums ∑l+6m=nσ(l)σ(m) and ∑2l+3m=nσ(l)σ(m), J. Number Theory 124 (2007), 491-510. https://doi.org/10.1016/j.jnt.2006.10.004
  8. M. Besge, Extrait dune lettre de M. Besge a M. Liouville, J. Math. Pures Appl. 7 (1862), 256.
  9. H.H. Chan and S. Cooper, Powers of theta functions, Pacific J. Math. 235 (2008), 1-14. https://doi.org/10.2140/pjm.2008.235.1
  10. B. Cho, Convolution sums of a divisor function for prime levels, Int. J. Number Theory 16 (2020), 537-546. https://doi.org/10.1142/s179304212050027x
  11. S. Cooper and P.C. Toh, Quintic and septic Eisenstein series, Ramanujan J. 19 (2009), 163-181. https://doi.org/10.1007/s11139-008-9123-3
  12. S. Cooper and D. Ye, Evaluation of the convolution sums ∑l+20m=nσ(l)σ(m), ∑4l+5m=nσ(l)σ(m) and ∑2l+5m=nσ(l)σ(m), Int. J. Number Theory 10 (2014), 1385-1394. https://doi.org/10.1142/S1793042114500341
  13. J.W.L. Glaisher, On the square of the series in which the coefficients are the sums of the divisors of the exponents, Mess. Math. 14 (1885), 156-163.
  14. J.G. Huard, Z.M. Ou, B.K. Spearman and K.S. Williams, Elementary evaluation of certain convolution sums involving divisor functions, in Number Theory for the Millennium, II, A.K. Peters, Natick, MA, 2002, 229-274.
  15. M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in: The Moduli Spaces of Curves, in: Progress Mathematics, vol. 129, Birkhauser, Boston, MA, 1995, 165-172.
  16. D.B. Lahiri, On Ramanujan's function τ(n) and the divisor function σ(n), I, Bull. Calcutta Math. Soc. 38 (1946), 193-206.
  17. J. Lee and Y.K. Park, Evaluation of the convolution sums ∑a1m1+a2m2+a3m3+a4m4=nσ(m1)σ(m2)σ(m3)σ(m4) with lcm(a1, a2, a3, a4) ≤ 4, Int. J. Number Theory 13 (2017), 2155-2173. https://doi.org/10.1142/S1793042117501160
  18. M. Lemire and K.S. Williams, Evaluation of two convolution sums involving the sum of divisor functions, Bull. Aust. Math. Soc. 73 (2005), 107-115. https://doi.org/10.1017/S0004972700038661
  19. LMFDB, The L-functions and Modular Forms Database, website https://www.lmfdb.org/
  20. E. Ntienjem, Evaluation of the convolution sums ∑αl+βm=nσ(l)σ(m), where (α, β) is in {(1, 14), (2, 7), (1, 26), (2, 13), (1, 28), (4, 7), (1, 30), (2, 15), (3, 10), (5, 6)}, M.Sc. thesis Carleton University, Ottawa, Ontario, Canada, 2015.
  21. E. Ntienjem, Evaluation of the convolution sum involving the sum of divisors function for 22, 44 and 52, Open Math. 15 (2017), 446-458. https://doi.org/10.1515/math-2017-0041
  22. E. Ntienjem, Elementary evaluation of convolution sums involving the divisor function for a class of levels, North-W. Eur. J. of Math. 5 (2019), 101-165.
  23. Y.K. Park, Evaluation of the convolution sums ∑ak+bl+cm=nσ(k)σ(l)σ(m) with lcm(a, b, c) ≤ 6, J. Number Theory 168 (2016), 257-275. https://doi.org/10.1016/j.jnt.2016.04.025
  24. Y.K. Park, Evaluation of the convolution sums ∑al+bm=nlσ(l)σ(m) with ab ≤ 9, Open Math. 15 (2017), 1389-1399. https://doi.org/10.1515/math-2017-0116
  25. Y.K. Park, Evaluation of the convolution sums ∑ak+bl+cm=nσ(k)σ(l)σ(m) with lcm(a, b, c) = 7, 8 or 9, Int. J. Number Theory 14 (2018), 1637-1650. https://doi.org/10.1142/s1793042118500999
  26. B. Ramakrishnan and B. Sahu, Evaluation of the convolution sums ∑l+15m=nσ(l)σ(m) and ∑3l+5m=nσ(l)σ(m) and an application, Int. J. Number Theory 9 (2013), 799-809. https://doi.org/10.1142/S179304211250162X
  27. S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
  28. E. Royer, Evaluating convolution sums of the divisor function by quasimodular forms, Int. J. Number Theory 3 (2007), 231-261. https://doi.org/10.1142/S1793042107000924
  29. E. Royer, Quasimodular forms: An introduction, Ann. Math. Blaise Pascal 19 (2012), 297-306. https://doi.org/10.5802/ambp.315
  30. W. Stein, Modular Forms: a Computational Approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, 2007.
  31. K.S. Williams, The convolution sum ∑m<n/9σ(m)σ(n - 9m), Int. J. Number Theory 1 (2005), 193-205. https://doi.org/10.1142/S1793042105000091
  32. K.S. Williams, The convolution sum ∑m<n/8σ(m)σ(n-8m), Pacific J. Math. 228 (2006), 387-396. https://doi.org/10.2140/pjm.2006.228.387
  33. E.X.W. Xia, X.L. Tian and O.X.M. Yao, Evaluation of the convolution sums ∑i+25j=nσ(i)σ(j), Int. J. Number Theory 10 (2014), 1421-1430. https://doi.org/10.1142/S1793042114500365
  34. D. Ye, Evaluation of the convolution sums ∑l+36m=nσ(l)σ(m) and ∑4l+9m=nσ(l)σ(m), Int. J. Number Theory 11 (2015), 171-183. https://doi.org/10.1142/S1793042115500104