• Title/Summary/Keyword: Sulfur Hexafluoride

Search Result 55, Processing Time 0.025 seconds

Molecular Behavior of $SF_6+H_2$ Structure II Hydrates (sII $SF_6+H_2$ 하이드레이트의 분자 거동)

  • Park, Da-Hye;Lee, Bo Ram;Sa, Jeong-Hoon;Sum, Amadeu K.;Lee, Kun-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.122.2-122.2
    • /
    • 2011
  • Sulfur hexafluoride ($SF_6$), one of the most potent greenhouse gases, is known as a hydrate former and has been studied at the high pressure up to 1.3 GPa with gas mixtures and with aqueous surfactant. Since we regard $SF_6$ as a potential promoter molecule that can stabilize hydrate structure more effectively compare to the other promoters, further investigation is required to verify the stabilizing ability of $SF_6$ in the hydrate structure. However, the insoluble nature of $SF_6$ in water or gases hinders fine scale analyses. This work discusses the data obtained by using molecular dynamics simulations of structure II (sII) clathrate hydrates containing $SF_6$ and $H_2$. The simulations were performed using the TIP4P/Ice model for water molecule and a previously reported $SF_6$ molecular model (optimized at the pure $SF_6$ single phase system (Olivet and Vega, 2007)), and a $H_2$ molecular model (adapted from the THF+$H_2$ hydrate system (Alavi et al., 2006)). The simulations are performed to observe the stability of $SF_6$ and $H_2$ in the sII clathrate hydrate system with varying temperature and pressure conditions and occupancies of $SF_6$ and $H_2$, which cannot be easily tuned experimentally. We observe that stability of H2 enclathrated in the hydrate structure more affected by the occupancy of $SF_6$ molecules and temperature than pressure, which ranges from 1 to 100 bar.

  • PDF

Studies on the $N_2/SF_6$ Permeation Behaviors Using the Polyethersulfone Hollow Fiber Membranes (폴리이서설폰 중공사 막을 이용한 $N_2/SF_6$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;Kim, Dae-Hoon;An, Young-Mo;Jo, Hang-Dae;Park, Jong-Soo
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.244-251
    • /
    • 2009
  • In this research the polyethersulfone hollow fiber membrane was used to separate Sulfur Hexafluoride ($SF_6$) which is the one of the six greenhouse gases from Air ($N_2$). The effects of the non-solvent (Acetone, Ethanol) type, air-gap and post-treatment (surface silicon coating) were investigated by the structure and performance of the membranes. The structure change of the membrane was examined by scanning electron microscope. The single gas permeation using $N_2$, $SF_6$ through the membrane surface coated with silicon showed maximum 7.64 perm-selectivity improved 3.4 times.

Study on the Multi-stage Hollow Fiber Membrane Modules for SF6 Gas Separation (불화가스 분리를 위한 중공사막 모듈의 다단 기체분리공정 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • Polyimide hollow fiber membrane modules were prepared in order to investigate the process of multi stage gas separation. The modules performance was carried out using 50/50 of $N_2/SF_6$ mixed gas. The membrane modules has been tested for measuring gas flow rate and concentration under various stage cut at 0.5 MPa. The membrane modules showed a high recovery ratio at the same stage cut as $N_2/SF_6$ selectivity increased. Two stage process was fulfilled for improving $SF_6$ recovery ratio and $SF_6$ concentration. Eventually, two stage process showed higher performance of $SF_6$ recovery ratio and concentration ($SF_6$ recovery ratio = 95%, $SF_6$ conc. = 98%).

Indoor Air Quality of Acidic Air Pollutants at a Private House in Seoul During the Spring Months

  • Lee, Hak-Sung;Kang, Byung-Wook;Kang, Choong-Min;Yeo, Hyun-Gu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E3
    • /
    • pp.109-115
    • /
    • 2001
  • Acidic air pollutants were collected to characterize indoor air quality at a private house in Seoul during the spring period. All indoor and outdoor samples were measured simultaneously using an annular denuder system. The data set was collected on twelve different days with a 24-hr sampling period in April and May 1997. The chemical species measured were HN $O_3$, HN $O_2$, S $O_2$ and N $H_3$in the gas phase and P $M_{2.5}$ (dp 2.5 ${\mu}{\textrm}{m}$), S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ and N $H_4$$^{+}$ in the particulate phase. Indoor concentrations of HN $O_2$, N $H_3$, and P $M_{2.5}$ were greater than outdoor levels. However, indoor concentrations of HN $O_3$, S $O_2$, N $O_3$$^{[-10]}$ and N $H_4$$^{+}$ were less than those found from outdoors. In the case of S $O_4$$^{2-}$, the indoor and outdoor concentrations were similar. Indoor concentrations of P $M_{2.5}$ , S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ were dependent upon the outdoor concentrations. A tracer-gas decay technique with sulfur hexafluoride (S $F_{6}$ ) as the tracer gas was used to estimate the air exchange rate of a private home in the spring. The average air exchange rate was computed to be 2.87 h $r^{-1}$ .X> .

  • PDF

AC Breakdown Voltage Characteristics of SF6/CF4 in Uniform field (평등전계에서 SF6/CF4 혼합가스의 AC절연내력 특성)

  • Hwang, Chung-Ho;Park, Woo-Shin;Kim, Nam-Ryul;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.381-387
    • /
    • 2007
  • The excellent dielectric properties of $SF_6$(sulfur hexafluoride) have lead to its wide range of application in the field of high voltage insulation. Because there has been some recent concern regarding the environmental impacts of $SF_6$ binary gas mixtures, with $SF_6$ as the main component, have been the subject of active research. Scientists have long been interested in the possible use of gaseous fluorocarbons, including $CF_4$ (Carton Tetrafluoride), in high voltage applications due to their inert character and high dielectric strength. This paper presents experimental results concerning the AC breakdown characteristics lot various mixtures of $SF_6/CF_4$ in a test chamber and 25.8 kV GIS (Gas Insulation Switchgear) at practical pressures (0.1-04 MPa) and gap lengths (0.5 mm, 1 mm) in a test chamber. In the result, it was observed that an increase in the dielectric strength is attained through the addition of $SF_6$ to $CF_4$. It is possible to make an environment friendly gas insulation material while maintaining the dielectric strength by combing $SF_6$ and $CF_4$ which generates a lower level of the "global warming" effect.

Effects of Surfactant on SF6 Gas Hydrate Formation Rate (가스 하이드레이트 형성 원리를 이용한 SF6 처리 기술에 관한 연구)

  • Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Shin-Ho;Lee, Ju-Dong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.73-76
    • /
    • 2008
  • [ $SF_6$ ] gas has been widely used as an insulating, cleaning and covering gas due to its outstanding insulating feature and because of its inert properties. However, the global warming potential of $SF_6$ gas is extremely high relative to typical global warming gases such as $CO_2$, CFCs, and $CH_4$. For these reasons, it is necessary to separate and collect waste $SF_6$ gas. In this study, the effects of a surfactant (Tween) on the formation rate of $SF_6$ gas hydrates were investigated. The $SF_6$ gas hydrate formation rate increased with the addition of Tween and showed a nearly 6.5 times faster hydrate formation rate with an addition of 0.2 wt.% Tween compared to an addition of pure water. This is believed to be due to the increased solubility of $SF_6$ gas with the addition of the surfactant. It was also found that $SF_6$ gas hydrate in the surfactant solution showed two-stage hydrate formation rates with a formation rate that increased rapidly in the 2nd stage.

Role of Contrast-Enhanced Ultrasound as a Second-Line Diagnostic Modality in Noninvasive Diagnostic Algorithms for Hepatocellular Carcinoma

  • Hyo-Jin Kang;Jeong Min Lee;Jeong Hee Yoon;Joon Koo Han
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.354-365
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of contrast-enhanced ultrasound (CEUS) and its role as a second-line imaging modality after gadoxetate-enhanced MRI (Gd-EOB-MRI) in the diagnosis of hepatocellular carcinoma (HCC) among at risk observations. Materials and Methods: We prospectively enrolled participants at risk of HCC with treatment-naïve solid hepatic observations (≥ 1 cm) of Liver Imaging Reporting and Data System (LR)-3/4/5/M during surveillance and performed Gd-EOB-MRI. A total of one hundred and three participants with 103 hepatic observations (mean size, 28.2 ± 24.5 mm; HCCs [n = 79], non-HCC malignancies [n = 15], benign [n = 9]; diagnosed by pathology [n = 57], or noninvasive method [n = 46]) were included in this study. The participants underwent CEUS with sulfur hexafluoride. Arterial phase hyperenhancement (APHE) and washout on Gd-EOB-MRI and CEUS were evaluated. The distinctive washout in CEUS was defined as mild washout 60 seconds after contrast injection. The diagnostic ability of Gd-EOB-MRI and of CEUS as a second-line modality for HCC were determined according to the European Association for the Study of the Liver (EASL) and the Korean Liver Cancer Association and National Cancer Center (KLCA-NCC) guidelines. The diagnostic abilities of both imaging modalities were compared using the McNemar's test. Results: The sensitivity of CEUS (60.8%) was lower than that of Gd-EOB-MRI (72.2%, p = 0.06 by EASL; 86.1%, p < 0.01 by KLCA-NCC); however, the specificity was 100%. By performing CEUS on the inconclusive observations in Gd-EOB-MRI, HCCs without APHE (n = 10) or washout (n = 12) on Gd-EOB-MRI further presented APHE (80.0%, 8/10) or distinctive washout (66.7%, 8/12) on CEUS, and more HCCs were diagnosed than with Gd-EOB-MRI alone (sensitivity: 72.2% vs. 83.5% by EASL, p < 0.01; 86.1% vs. 91.1% by KCLA-NCC, p = 0.04). There were no false-positive cases for HCC on CEUS. Conclusion: The addition of CEUS to Gd-EOB-MRI as a second-line diagnostic modality increases the frequency of HCC diagnosis without changing the specificities.

Separation and Recovery of $SF_6$ Gas from $N_2/SF_6$ Gas Mixtures by using a Polymer Hollow Fiber Membranes (고분자 중공사 분리막을 이용한 $N_2/SF_6$ 혼합가스로부터 $SF_6$의 분리 및 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • $SF_6$ (Sulfur hexafluoride) possesses high GWP (Global Warming Potential) as sepcified by the IPCC (Intergonvernmental Panel of Climate Change). Recently, the recovery-separtion of $SF_6$ research area, including permeation properties studies using various membrane's materials and the practical operation of recovery-separtion using membrane of waste $SF_6$ gas is in the initial state. The separation efficiency of a single $SF_6$ and waste $SF_6$ mixture was evaluated using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. According to the results of single gases permeation properties, PI membrane has the highest permselectivity of $N_2$ gas in $N_2/SF_6$ gas. Under the condition of P=0.5 MPa, the highest concentration of recovered $SF_6$ is 95.6 vol % in the separation experiment of $SF_6/N_2$ mixture gas by PC membrane. Under the operation pressure of P=0.3 MPa at a fixed retentate flow rate fixed of 150 cc/min, the maximum recovery efficiency of $SF_6$ is up to 97.8% by PSF membrane. From the results above, it is thought that the separation and recovery technique of $SF_6$ gas using membrane will be used as the representative eco-technology in the $SF_6$ gas treatment in the future.

Crystal growth studies of $SF_6$ clathrate hydrate ($SF_6$ 하이드레이트 결정의 성장 특성에 대한 연구)

  • Lee, Yoon-Seok;Lee, Ju-Dong;Lee, Bo-Ram;Lee, Hyun-Ju;Lee, Eun-Kyung;Kim, Soo-Min;Kim, Young-Seok;Yoon, Seog-Young;Kim, Yang-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.228-236
    • /
    • 2009
  • In this study, we investigated morphological characteristics of $SF_6$ clathrate hydrate crystals to understand its formation and growth mechanism. $SF_6$ clathrate hydrate crystals were formed in high-pressure reaction cell charged with pure water and $SF_6$ gas at constant pressure and temperature. Two-phase ($SF_6$ gas/aqueous solution) and three-phase ($SF_6$ gas/aqueous solution/$SF_6$ liquid) conditions were investigated, In both conditions, dendritic shape hydrate crystals were grown as like fibriform crystals along upward growth direction at the gas/aqueous solution interface. In the case of the reaction process of three-phase condition, when the $SF_6$ gas bubbles which were generated in $SF_6$ liquid phase due to the reduction of reaction cell pressure stuck to the gas/aqueous interfaces, the hydrate phase were appeared at the surface of the bubbles. This paper presents the detail growth characteristics of $SF_6$ hydrate crystals including crystal nucleation, migration, growth and interference.

Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry (전자산업 배출 불화가스 회수를 위한 탄소분자체 분리막의 기체분리 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Han, Sang Hoon;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.220-228
    • /
    • 2016
  • Carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a polyimide precursor manufactured by non-solvent induced phase separation process. Gas separation performance of CMS hollow fiber membrane was investigated on the effect of three carbonization conditions. CMS membrane with the highest gas separation performance was obtained at the pyrolysis temperature of $250-450^{\circ}C$: $N_2$, $SF_6$, and $CF_4$ permeance were 20, 0.32, 0.48 GPU, respectively, and $N_2/SF_6$ and $N_2/CF_4$ selectivities were 62 and 42, respectively. In the $SF_6/CF_4/N_2$ mixture gas test, when the stage cut was 0.2, the recovery ratio of $SF_6$ and $CF_4$ was over 99% and 98%. $SF_6$ concentration ratio was 4.5 times higher than the $SF_6$ concentration at the feed side. From the results, it was concluded that CMS membrane was one of the promising membranes for recovery Perfluorocompound gases process.