• 제목/요약/키워드: Sulfide solid electrolyte

검색결과 13건 처리시간 0.022초

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.176-183
    • /
    • 2018
  • In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating

  • Yoon, Da Hye;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권1호
    • /
    • pp.126-136
    • /
    • 2021
  • The electrochemical performance of all-solid-state cells (ASSCs) based on sulfide electrolytes is critically affected by the undesirable interfacial reactions between oxide cathodes and sulfide electrolytes because of the high reactivity of sulfide electrolytes. Based on the concept that the interfacial reactions are highly dependent on the type of sulfide electrolyte, the electrochemical properties of the ASSCs prepared using three types of sulfide electrolytes were observed and compared. The Li2MoO4-LiI coating layer was also introduced to suppress the interfacial reactions. The cells using argyrodite electrolyte exhibited a higher capacity and Coulombic efficiency than the cells using 75Li2S-22P2S5-3Li2SO4 and Li7P3S11 electrolytes, indicating that the argyrodite electrolyte is less reactive with cathodes than other electrolytes. Moreover, the introduction of Li2MoO4-LiI coating on the cathode surface significantly enhanced the electrochemical performance of ASSCs because of the protection of coating layer. Pulverization of argyrodite electrolyte is also effective in increasing the capacity of cells because the smaller size of electrolyte particles improved the contact stability between the cathode and the sulfide electrolyte. The cyclic performance of cells was also enhanced by pulverized electrolyte, which is also associated with improved contact stability at the cathode/electrolyte. These results show that the introduction of Li2MoO4-LiI coating and the use of pulverized sulfide electrolyte can exhibit a synergic effect of suppressed interfacial reaction by the coating layer and improved contact stability owing to the small particle size of electrolyte.

Enhanced Electrochemical Properties of All-Solid-State Batteries Using a Surface-Modified LiNi0.6Co0.2Mn0.2O2 Cathode

  • Lim, Chung Bum;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.411-420
    • /
    • 2020
  • Undesirable interfacial reactions between the cathode and sulfide electrolyte deteriorate the electrochemical performance of all-solid-state cells based on sulfides, presenting a major challenge. Surface modification of cathodes using stable materials has been used as a method for reducing interfacial reactions. In this work, a precursor-based surface modification method using Zr and Mo was applied to a LiNi0.6Co0.2Mn0.2O2 cathode to enhance the interfacial stability between the cathode and sulfide electrolyte. The source ions (Zr and Mo) coated on the precursor-surface diffused into the structure during the heating process, and influenced the structural parameters. This indicated that the coating ions acted as dopants. They also formed a homogenous coating layer, which are expected to be layers of Li-Zr-O or Li-Mo-O, on the surface of the cathode. The composite electrodes containing the surface-modified LiNi0.6Co0.2Mn0.2O2 powders exhibited enhanced electrochemical properties. The impedance value of the cells and the formation of undesirable reaction products on the electrodes were also decreased due to surface modification. These results indicate that the precursor-based surface modification using Zr and Mo is an effective method for suppressing side reactions at the cathode/sulfide electrolyte interface.

Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries

  • Ann, Jiu;Choi, Sunho;Do, Jiyae;Lim, Seungwoo;Shin, Dongwook
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.413-418
    • /
    • 2018
  • All-solid-state lithium batteries (ASSBs) using inorganic sulfide-based solid electrolytes are considered prospective alternatives to existing liquid electrolyte-based batteries owing to benefits such as non-flammability. However, it is difficult to form a favorable solid-solid interface among electrode constituents because all the constituents are solid particles. It is important to form an effective electron conduction network in composite cathode while increasing utilization of active materials and not blocking the lithium ion path, resulting in excellent cell performance. In this study, a mixture of fibrous VGCF and spherical nano-sized Super P was used to improve rate performance by fabricating valid conduction paths in composite cathodes. Then, composite cathodes of ASSBs containing 70% and 80% active materials ($LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$) were prepared by a solution-based process to achieve uniform dispersion of the electrode components in the slurry. We investigated the influence of binary carbon additives in the cathode of all-solid-state batteries to improve rate performance by constructing an effective electron conduction network.

Solution-based fabrication of germanium sulphide doped with or without Li ions for solid electrolyte applications

  • Jin, Byeong Kyou;Cho, Yun Gu;Shin, Dong Wook;Choi, Yong Gyu
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.110-113
    • /
    • 2012
  • Ge-S and Li-Ge-S powders were synthesized via solution-based process in order to employ chalcogenide-based solid electrolyte for use in Li secondary batteries. GeCl4 and thioacetamide in combination result in Ge-S powders of which major crystalline phase becomes GeS2 where the tetragonal and orthorhombic phases coexist after heat treatment. A chemical treatment using NaOH brings about the reduction of chlorine in the powders obtained. However, the heat treatment at 300 ℃ is more effective in minimizing the chlorine content. When lithium chloride is used as the precursor of Li ions, the LiCl powders are agglomerated with an inhomogeneous distribution. When Li2S is used, the Li-Ge-S powders are distributed more uniformly and the orthorhombic GeS2 phase dominates in the powders.

LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가 (Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites)

  • 황준현;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

리튬계 수소화물 전해질 복합막의 열확산 및 전기화학적 특성평가 (Evaluations of Thermal Diffusivity and Electrochemical Properties for Lithium Hydride and Electrolyte Composites)

  • 황준현;홍태환
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.429-434
    • /
    • 2022
  • There is ongoing research to develop lithium ion batteries as sustainable energy sources. Because of safety problems, solid state batteries, where electrolytes are replaced with solids, are attracting attention. Sulfide electrolytes, with a high ion conductivity of 10-3 S/cm or more, have the highest potential performance, but the price of the main materials is high. This study investigated lithium hydride materials, which offer economic advantages and low density. To analyze the change in ion conductivity in polymer electrolyte composites, PVDF, a representative polymer substance was used at a certain mass ratio. XRD, SEM, and BET were performed for metallurgical analyses of the materials, and ion conductivity was calculated through the EIS method. In addition, thermal conductivity was measured to analyze thermal stability, which is a major parameter of lithium ion batteries. As a result, the ion conductivity of LiH was found to be 10-6 S/cm, and the ion conductivity further decreased as the PVDF ratio increased when the composite was formed.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조 (Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis)

  • 정윤교;이혁재;장인영;황갑진;배기광;심규성;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

전고체전지용 황화물 고체전해질 습식 합성기술 동향 (A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries)

  • 하윤철
    • 전기화학회지
    • /
    • 제25권3호
    • /
    • pp.95-104
    • /
    • 2022
  • 상용 리튬이온전지의 에너지밀도 한계와 안전성 이슈로 불연성 전고체전지 개발이 현안이 되고 있다. 특히, 전기자동차를 위한 차세대 이차전지에 황화물 고체전해질의 적용 가능성이 높아지면서, 고체전해질의 대량생산과 저가격화를 위한 노력 또한 활발해 진행되고 있다. 황화물 고체전해질에 관한 현재까지의 대부분의 연구에서는 조성 및 불순물 제어가 용이하고 균질화와 열처리 시간을 줄일 수 있는 고에너지 기계적 밀링법을 이용하여 열역학적으로 안정한 상 및 준-안정한 상에 대한 탐색을 수행해 왔다. 이를 통해 액체 전해질의 리튬이온전도도를 능가하는 다양한 황화물 고체전해질이 보고되어, 고에너지밀도 고안전성 전고체전지 구현에 대한 기대가 커지고 있다. 그러나, 고에너지 기계적 밀링법은 대량생산에 따른 동일 물성 획득이 쉽지 않고, 입도나 형상 제어가 용이하지 않으며, 분쇄-분급 과정에서 물성의 열화가 발생하는 단점이 알려져 있다. 이에 비해 대량생산과 저가격화에 유리한 습식 합성기술은 아직 다양한 고체전해질 제조에 응용되지는 못하고 있다. 습식 합성기술에서는 입자형, 용액형, 또는 혼합형으로 전구체를 합성하고 용매를 제거한 후 열처리하는 공정을 통해 제조하고 있으나, 전구체의 형성 메커니즘에 대한 명확한 규명도 아직 이루어지지 않고 있다. 본 총설에서는 용매 내 원료들의 반응 메커니즘을 중심으로 한 황화물 고체전해질의 습식 합성기술 동향을 살펴보고자 한다.