• Title/Summary/Keyword: Sulfide electrode

Search Result 39, Processing Time 0.028 seconds

Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries

  • Kim, Yunjung;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.250-257
    • /
    • 2022
  • Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.

Electrodeposition of Manganese from Ferromanganese Slag with Ammonium Sulfate (황산암모늄에 의한 훼로망간 슬랙으로부터 망간의 전착)

  • Duk Mook Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.390-396
    • /
    • 1985
  • The manganese was extracted from ferromanganese slag with 6N ammonium sulfate and purified with ammonium sulfide. The current efficiencies were substantially increased when small amounts of selenious acid is used as an additive. Stainless steel was used as cathodic electrode and lead (+1% Ag) as anodic electrode. The effects of several variables were investigated, and the optimum conditions were found to be; 40g/l Mn in electrolyte at pH 7.0 with 1$20g/l (NH_4)_2SO_4$, Cathode current density 60mA/cm$^2$, Current efficiency 90% and up at the temperature about $25^{\circ}C.$ The metal produced has been consistantly of high quality.

  • PDF

Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition (원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향)

  • Han, Jeong Hwan
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

A Study on the Separation of Cadmium from Waste Ni-Cd Secondary Batteries by Ion Substitution Reaction (이온치환 반응을 이용한 니켈-카드뮴 폐이차전지에서 카드뮴의 분리에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Ahn, Nak-Kyoon;Jeong, Hang-Chul;Jung, Soo-Hoon;Choi, Joong-Yup;Yang, Dae-Hoon
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • In order to recycle waste nickel-cadmium batteries, cadmium was selectively removed by ion substitution reaction so that cadmium and nickel could be separated efficiently. The electrode powder obtained by crushing the electrode in the waste nickelcadmium battery was leached with sulfuric acid. The cadmium in the nickel-cadmium solution was precipitated with cadmium sulfide by the addition of sodium sulfide. Ion substitution experiments were carried out under various conditions. At the optimum condition with pH = -0.1 and $Na_2S/Cd=2.3$ at room temperature, the residual Cd in the solution was about 100 ppm, and most of it was precipitated with CdS.

Spectral Induced Polarization Response Charaterization of Pb-Zn Ore Bodies at the Gagok mine (가곡광산 연-아연 광체의 광대역유도분극 반응 특성)

  • Shin, Seungwook;Park, Samgyu;Shin, Dongbok
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.247-252
    • /
    • 2014
  • Gagok Mine, which is skarn deposits, includes sulfide minerals such as sphalerite, galena, chalcopyrite, and pyrrhotite. To explore these minerals, spectral induced polarization (SIP) is relatively effective compared to other geophysical exploration methods because there is a strong IP effect caused by electrode polarization. In the SIP, the chargeability related to sulfide mineral contents and the time constant related to the grain size of the minerals are obtained. For this reason, we aim to compare difference in the mineralized characteristics between two orebodies in the Gagok Mine by using the chargeability and the time constant. For this study, we sampled ores from the south of Wolgok orebody and the north of Sungok orebody. In order to recognize the mineralization characteristics, the metal content of the samples was measured by a potable XRF and the SIP data of the samples were acquired by using a laboratory SIP measurement system. As a result, the metals in the samples such as Pb, Zn, Cu, and Fe were detected by the portable XRF measurement. In particular, the Fe and Zn contents were far higher than the other metals. The Fe and the Zn were caused by the sphalerite and the pyrrhotite through microscopy. The Wolgok orebody had higher sulfide mineral contents than the Sungok orebody and the result corresponded with the chargeability result. However, we considered that the Sungok orebody had a larger sulfide mineral grain size than the Wolgok orebody because the time constant of the Sungok orebody was larger.

The Charge-Discharge Performance of $Li/MoS_2$ Battery with liquid Electrolyte of Tetra(ethylene glycol] Dimethyl Ether[TEGDME] (TEGDME 액체 전해질을 사용한 $Li/MoS_2$ 전지의 충.방전 특성)

  • Kwon, Jeong-Hui;Ryu, Ho-Suk;Kim, Ki-Won;Ahn, Jou-Hyeon;Jeong, Yong-Su;Lee, Kun-Hwan;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.238-244
    • /
    • 2009
  • We investigated the electrochemical properties of lithium/molybdenum sulfide(Li/MoS$_2$) using tetra (ethylene glycol) dimethyl ether(TEGDME) electrolyte. The Li/TEGDME/MoS$_2$ cell showed the first discharge capacity of 288mAhg$^{-1}$. From the XRD, SEM results of the MOS$_2$ electrode in various cut-off voltage during charge-discharge process, MoS$_2$ partly changed into Li$_2$S and Mo during discharge and Li$_2$S partly recovered into MOS$_2$ and Li during charge. Full charged MOS$_2$ electrode showed lump shape of big size, which might be related to agglomerate of MoS$_2$ particles. Therefore, the degradation might be related to decrease of active material for electrochemical reaction by agglomeration of MOS$_2$.

Surface Morphology Changes of Lithium/Sulfur Battery using Multi-walled carbon nanotube added Sulfur Electrode during Cyclings (탄소나노튜브가 첨가된 유황전극을 사용한 리튬/유황 전지의 사이클링에 의한 표면형상변화)

  • Park, Jin-Woo;Yu, Ji-Hyun;Kim, Ki-Won;Ryu, Ho-Suk;Ahn, Jou-Hyeon;Jin, Chang-Soo;Shin, Kyung-Hee;Kim, Young-Chul;Ahn, Hyo-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2011
  • We investigated the surface morphology changes of a lithium/sulfur battery using multi-walled canbon nanotube added sulfur electrode during charge-discharge cycling. The Li/S cell showed the first discharge capacity of 1286 mAh/g-S, which utilized is 71% of the theoretical value. It decreased to 328 mAh/g-S at the 100th cycle, which corresponds to about 19% utilization of the total sulfur in the cathode. The spherical lumps of the reaction product were observed on the surface of the sulfur electrode. This material was verified as lithium sulfide by X-ray diffraction measurement. The pores in the separator were filled with reaction product. Thus the diffusion of the $Li^+$ ion decreased, which resulted in the decreased capacity of the Li/S cell.

Responses of Chloramphenicol Immunosensor to Analyte Types

  • PARK , IN-SEON;KIM, DONG-KYUNG;KIM, NAM-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1157-1162
    • /
    • 2004
  • A well-holder type piezoelectric chloramphenicol (CAP) immunosensor which was prepared by binding an anti­CAP antibody to the chemisorbed monolayers of various thiol or sulfide compounds over the gold electrode surface of quartz crystals through a carboxyl-amine coupling procedure, using the activation with l-ethyl- 3-(3-dimethylarninopropyl)carbodiimide­HCl and N-hydroxysulfosuccinimide, was determined for its responses to CAP, CAP succinate, and water-soluble CAP. The reaction phase used in the well holder was 0.01 M phosphate buffer (pH 7.4), and the solvent for analyte dissolution varied according to the solubility of the individual analyte. The analyte detection which was indicated by a steady-state frequency shift was finished within 10 min, except for CAP dissolved in methanol. The responses of CAP succinate and water-soluble CAP in the reaction phase were very stable, while a minute fluctuation was found with CAP.

Experimence Study of Trace Water and Oxygen Impact on SF6 Decomposition Characteristics Under Partial Discharge

  • Zeng, Fuping;Tang, Ju;Xie, Yanbin;Zhou, Qian;Zhang, Chaohai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1786-1795
    • /
    • 2015
  • It is common practice to identify the insulation faults of GIS through monitor the contents of SF6 decomposed components. Partial discharges (PD) could lead to the decomposition of SF6 dielectric, so new reactions usually occur in the mixture of the newly decomposed components including traces of H2O and O2. The new reactions also cause the decomposed components to differ due to the different amounts of H2O and O2 even under the same strength of PD. Thus, the accuracy of assessing the insulation faults is definitely influenced when using the concentration and corresponding change of decomposed components. In the present research, a needle-plate electrode was employed to simulate the PD event of a metal protrusion insulation fault for two main characteristic components SO2F2 and SOF2, and to carry out influence analysis of trace H2O and O2 on the characteristic components. The research shows that trace H2O has the capability of catching an F atom, which inhibits low-sulfide SFx from recombining into high-sulfide SF6. Thus, the amount of SOF2 strongly correlates to the amount of trace H2O, whereas the amount of SO2F2 is weakly related to trace H2O. Furthermore, the dilution effect of trace O2 on SOF2 obviously exceeds that of SO2F2.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF