The Charge-Discharge Performance of $Li/MoS_2$ Battery with liquid Electrolyte of Tetra(ethylene glycol] Dimethyl Ether[TEGDME]

TEGDME 액체 전해질을 사용한 $Li/MoS_2$ 전지의 충.방전 특성

  • Kwon, Jeong-Hui (I-Oabe Center, ReCAPT, School of Materials Science and Engineering) ;
  • Ryu, Ho-Suk (PRC for Nano-Morphic Biological Energy Conversion and Storage) ;
  • Kim, Ki-Won (I-Oabe Center, ReCAPT, School of Materials Science and Engineering) ;
  • Ahn, Jou-Hyeon (Departrnent of Chemical and Biological Engineering, Gyeongsang National University) ;
  • Jeong, Yong-Su (Korea Institute of Materials science) ;
  • Lee, Kun-Hwan (Korea Institute of Materials science) ;
  • Ahn, Hyo-Jun (I-Oabe Center, ReCAPT, School of Materials Science and Engineering)
  • 권정희 (경상대학교 나노.신소재공학과, 아이큐브 사업단) ;
  • 류호석 (경상대학교 PRC-NBECS) ;
  • 김기원 (경상대학교 나노.신소재공학과, 아이큐브 사업단) ;
  • 안주현 (경상대학교 생명화학공학과) ;
  • 정용수 (한국기계연구원) ;
  • 이건환 (한국기계연구원) ;
  • 안효준 (경상대학교 나노.신소재공학과, 아이큐브 사업단)
  • Published : 2009.06.30

Abstract

We investigated the electrochemical properties of lithium/molybdenum sulfide(Li/MoS$_2$) using tetra (ethylene glycol) dimethyl ether(TEGDME) electrolyte. The Li/TEGDME/MoS$_2$ cell showed the first discharge capacity of 288mAhg$^{-1}$. From the XRD, SEM results of the MOS$_2$ electrode in various cut-off voltage during charge-discharge process, MoS$_2$ partly changed into Li$_2$S and Mo during discharge and Li$_2$S partly recovered into MOS$_2$ and Li during charge. Full charged MOS$_2$ electrode showed lump shape of big size, which might be related to agglomerate of MoS$_2$ particles. Therefore, the degradation might be related to decrease of active material for electrochemical reaction by agglomeration of MOS$_2$.

Keywords

References

  1. R.R. Haering. J. A. R. Stiles and K. Brandt, U.S. Patent N 4,224,390, 1980
  2. M.A. Santa Ana, V. Sanchez, G. Gonzalez, Electrochim. Acta 40, (1995)1773 https://doi.org/10.1016/0013-4686(93)E0001-3
  3. M.A. Santa-Ana and G. Gonzalez M, Bol. Soc. Chil. Quim. 37 (1992) 157
  4. F.e. Lama, K. Brandt, J. Power Sources, 24 (1988) 195-206 https://doi.org/10.1016/0378-7753(88)80115-0
  5. K. Kumai, T. Ikeya, K Ishihara, T. Iwahori, N. Irnanishi, Y. Takeda and a.Yamamoto, J. Power Sources, 70 (1998) 235-239 https://doi.org/10.1016/S0378-7753(97)02678-5
  6. M. S. Whittingham, Prong. Solid State Chem. 12 (1978) 41 https://doi.org/10.1016/0079-6786(78)90003-1
  7. R.B. Somoano, V. Hadek, A. Rembaum, J. Chem. Phys. 58(1974) 697
  8. E. Peled, Y. Sternberg, A. Gorenshtein, Y. Lavi, J. Electrochem. Soc. 136 (1989) 162
  9. Joongpyo Shim, Kathryn A. Striebel and Elton J. Cairns, J. Electrochern. Soc. 149(10), (2002) A 1321 https://doi.org/10.1149/1.1503076
  10. Duck-Rye Chang, Suck-Hyun Lee, Sun-Wook Kim, Hee-Tak Kim, Journal of Power Source 112 (2002) 452-460 https://doi.org/10.1016/S0378-7753(02)00418-4
  11. H. S. Ryu, H. J. Ahn, K. W. Kim, J. H. Ahn, K. K Cho, T.H. Nam, Electrochimica Acta, 52 (2006) 1563-1566
  12. Y. Miki, D. Nakazato, H. Ikuta, T. Uchida and M. Wakihara, J. Power Sources, 54 (1995)
  13. C.M. Julien, Material Science and Engineering R 40 (2003)
  14. M. S. Whittingham, R. S. Chianelli, A. J. Jacobson, in : D. W. Murphy, J. Broadhead, B.C. H.Steele(Eds.), Materials for Advanced Batteries, Plenum Press, New York (1980)
  15. CM Julien, S. I. Saikh and G.A. Nazri, Material Science and Engineering B15 (1992)
  16. E. Benavente, M.A. Santa Ana, F. Mendizabal, G.Gonzalez, coordination Chemistry Reviews 224 (2002) 87 https://doi.org/10.1016/S0010-8545(01)00392-7