• Title/Summary/Keyword: Suction Temperature

Search Result 160, Processing Time 0.043 seconds

Effect of the Suction Air Temperature on the Performance of a Positive Displacement Air Compressor (흡입공기 온도에 의한 용적형 공기 압축기 성능 변화)

  • Jang, Ji-Seong;Han, Seoung-Hun;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Pneumatic systems are widely applied in various industry because it have a many advantage(low cost, high safety, etc.). Air compressors supply the working fluid to the pneumatic systems and consume a lot of electrical energy at the manufacturing site. The one of the suggested idea is to reduce the energy consumption by reducing the suction temperature of the air compressor and increasing the discharge flow rate. In this paper, the discharge flow rate and air power of the positive displacement type air compressor is simulated by changing the temperature of suction air and the relationship between the suction air temperature and the performance variation of the air compressor is analyzed. As a result, we know that as the suction temperature of air is lowered, the discharge mass flow-rate is increased, but the specific enthalpy is reduced rather than increased, which means that the power of the discharged air is not greatly increased even if lower the suction air temperature.

Evaluation of Water Suction for Compacted Bentonite Buffer Under Elevated Temperature Conditions

  • Yoon, Seok;Lee, Deuk-Hwan;Cho, Won-Jin;Lee, Changsoo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 2022
  • A compacted bentonite buffer is a major component of engineered barrier systems, which are designed for the disposal of high-level radioactive waste. In most countries, the target temperature required to maintain safe functioning is below 100℃. If the target temperature of the compacted bentonite buffer can be increased above 100℃, the disposal area can be dramatically reduced. To increase the target temperature of the buffer, it is necessary to investigate its properties at temperatures above 100℃. Although some studies have investigated thermal-hydraulic properties above 100℃, few have evaluated the water suction of compacted bentonite. This study addresses that knowledge gap by evaluating the water suction variation for compacted Korean bentonite in the 25-150℃ range, with initial saturations of 0 and 0.22 under constant saturation conditions. We found that water suction decreased by 5-20% for a temperature increase of 100-150℃.

NUMERICAL SOLUTIONS OF AN IMPACT OF NATURAL CONVECTION ON MHD FLOW PAST A VERTICAL PLATE WITH SUCTION OR INJECTION

  • Ambethkar, V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.4
    • /
    • pp.201-202
    • /
    • 2008
  • Because of the importance of suction or injection in the fields of aerodynamics, space science and many other industrial applications, our present study is motivated. The effect of natural convection on MHD flow past a vertical plate with suction or injection is studied. We have tried to solve the dimensionless governing equations by using finite difference scheme. To ensure the validity of our numerical solutions, we have compared our numerical solutions for temperature and velocity for the case of suction and injection for unit Prandtl number with the available exact solutions in the literature. The corresponding codes were written in Mathematica 5.0 for calculating numerical solutions for temperature and velocity and the comparison between the exact and numerical solutions. For the purpose of discussing the results some numerical calculations are carried out for non-dimensional temperature T, velocity u, skin friction ${\tau}$ and the Nusselt number $N_u$, by making use of it, the rate of heat transfer is studied.

  • PDF

Experimental Investigation on Premixed Combustion Characteristics with Suction & Blow Fans (Suction과 blow fan을 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, Ki-Bal;Kim, Dong-Il;Oh, Sang-Heun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.15-23
    • /
    • 2002
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature. CO concentration were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$, and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF

Effect of variable viscosity on combined forced and free convection boundary-layer flow over a horizontal plate with blowing or suction

  • Mahmoud, Mostafa A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2007
  • The effects of variable viscosity, blowing or suction on mixed convection flow of a viscous incompressible fluid past a semi-infinite horizontal flat plate aligned parallel to a uniform free stream in the presence of the wall temperature distribution inversely proportional to the square root of the distance from the leading edge have been investigated. The equations governing the flow are transformed into a system of coupled non-linear ordinary differential equations by using similarity variables. The similarity equations have been solved numerically. The effect of the viscosity temperature parameter, the buoyancy parameter and the blowing or suction parameter on the velocity and temperature profiles as well as on the skin-friction coefficient and the Nusselt number are discussed.

  • PDF

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.

A Study for Removing of the Solder from Printed Circuit Boards(PCBs) (인쇄회로기판으로부터 땜납 제거방법에 관한 연구)

  • 이화조;이성규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.76-85
    • /
    • 2003
  • In this paper, a technical method for removing the solder from PCBs has been proposed to simplify the pulverizing process and to get higher quality of materials for recycling of the electronic parts in the Printed Circuit Boards (PCBs). There are several techniques to remove the solder from PCB, such as physical and chemical method, vibration, suction and blowing and so on. Among them, the suction technique turned out the best method by investigation. In the suction method, there are three variables for removing the solder. They are a temperature of the thermal wire, a velocity of moving PCB and a gap between PCB and thermal wire. To find the optimal variables for the system, an experiment has been conducted by a trial and error method. The optimal variables were found $220^{\circ}C$ of temperature, 11.58mm/s of velocity, 10mm of gap (A gap between suction hole and bottom of PCBs is 5mm). The result of the experiment shows that 50% of the solder were removed.

Experimental Investigation on premixed combustion Characteristics with suction & blow fans (송풍기와 폐풍기를 이용한 연소기내의 부분 예혼합화염 연소 특성에 관한 실험적 연구)

  • Kang, B.K.;Oh, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.143-148
    • /
    • 2001
  • We measured emission indices for $NO_x$, CO, temperature and radical characteristics for partially premixied flames formed by suction & blow fans air condition. At sufficiently high levels of partial premixing a double flame structure consisting of a rich premixed inner flame and outer diffusion flame was established similar to that previously observed in premixed flames. $NO_x$, Temperature, CO values were experimented with approximately constant air flow rate and decreasing equivalence ratios. The reduction in $NO_x$ and temperature at suction condition as compared with that for blow condition was approximately 20%, but on the contrary, CO emission was increased. In addition, We measured temperature distributions and found that temperature increased continuously with increasing partial premixing. We also estimated CH, $C_2$ radical intensity. CH and $C_2$ radicals provide evidence that, for the present measurement, CH and $C_2$ radicals intensity was associsated with their premixed component. And we observed stronger $C_2$, CH radicals intensity at suction conditions than blow conditions.

  • PDF

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Carbon Nanotube Oscillator Operated by Thermal Expansion of Encapsulated Gases (삽입 가스의 부피 팽창을 이용한 탄소나노튜브 진동기)

  • Kwon, Oh-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1092-1100
    • /
    • 2005
  • We investigated a carbon nanotube (CNT) oscillator controlled by the thermal gas expansion using classical molecular dynamics simulations. When the temperature rapidly increased, the force on the CNT oscillator induced by the thermal gas expansion rapidly increased and pushed out the CNT oscillator. As the CNT oscillator extruded from the outer nanotube, the suction force on the CNT oscillator increased by the excess van der Waals(vdW) energy. When the CNT oscillator reached at the maximum extrusion point, the CNT oscillator was encapsulated into the outer nanotube by the suction force. Therefore, the CNT oscillator could be oscillated by both the gas expansion and the excess vdW interaction. As the temperature increased, the amplitude of the CNT oscillator increased. At the high temperatures, the CNT oscillator escaped from the outer nanotube, because the force on the CNT oscillator due to the thermal gas expansion was higher than the suction force due to the excess vdW energy. By the appropriate temperature controls, such as the maximum temperature, the heating rate, and the cooling rate, the CNT oscillator could be operated.