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ABSTRACT. Because of the importance of suction or injection in the fields of aerodynamics, space 
science and many other industrial applications, our present study is motivated. The effect of natural 
convection on MHD flow past a vertical plate with suction or injection is studied. We have tried to 
solve the dimensionless governing equations by using finite difference scheme. To ensure the 
validity of our numerical solutions, we have compared our numerical solutions for temperature and 
velocity for the case of suction and injection for unit Prandtl number with the available exact 
solutions in the literature. The corresponding codes were written in Mathematica 5.0 for calculating 
numerical solutions for temperature and velocity and the comparison between the exact and 
numerical solutions. For the purpose of discussing the results some numerical calculations are 
carried out for non-dimensional temperature T, velocity u, skin friction τ and the Nusselt number Nu , 
by making use of it, the rate of heat transfer is studied. 

 
 

1. INTRODUCTION 
 

The phenomenon free convection has many important technological applications e.g in 
cooling a nuclear reactor, providing heat sinks in turbine blades etc. On the other hand, the 
structures of stars and planets are known to be greatly influenced by thermal convection in 
their interior. Soundalgekar[1] initiated the study of free convection effects on the 
oscillatory flow past an infinite, vertical porous plate with constant suction. Free 
convection effects on the Stokes problem for an infinite vertical plate was again 
investigated by Soundalgekar[2]. Free convection and mass transfer effects on the 
oscillatory flow of a dissipative fluid past an infinite vertical porous plate was studied by 
Georgantopoulos et al [3]. Natural convection effects on MHD flow past an impulsively 
started permeable vertical plate was studied by Revankar[4]. Soundalgekar et al [5] have 
investigated mass transfer effects on the flow past an impulsively started infinite vertical 
plate with variable temperature or constant heat flux. MHD thermal –diffusion effects on 
free convective and mass transfer flow over an infinite vertical moving plate was studied 
by kafousias [7]. Ching-yung-cheng[9] analyzed the effect of a magnetic field on heat and 
mass transfer by natural convection from vertical surface in porous medium by an integral 
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approach. 
An effect of natural convection on MHD flow past a vertical plate was investigated 

by many researchers as mentioned above. But in presence of suction or injection, an i
mpact of natural convection on MHD flow was not initiated by any one. It is propose
d to study the same in this paper. Also the governing equations were solved by finite 
difference method. To ensure the validity of our numerical solutions, we have compare
d our numerical solutions for temperature and velocity for the case of suction (r > 0) 
for unit Prandtl number with the available exact solutions in the literature. 
 
 

2. MATHEMATICAL FORMULATION 
 

An unsteady two-dimensional free convective flow of an electrically conducting viscous 
and incompressible fluid past an infinite, porous and vertical plate with suction/injection is 
considered. A magnetic field B0 is applied perpendicular to the plate. A system of rectangular 
coordinate axes ox1y1z1 is taken such that y1=0 on the plate and z1 is along its leading edge. All 
the fluid properties are considered. 

 

 
 

FIGURE 0. Geometry of the problem 
 
An influence of the density variation with temperature is considered only in the body force 

term. Its influence in other terms of the momentum and energy equation is neglected. This is the 
well-known Boussinesq approximation. Thus, under these assumptions, the physical variables 
are functions of y 1 and t1only. The problem is governed by the following equations 
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The initial and boundary conditions of the problem are 

t1≤ 0, u1(y1,t1) = 0, T1 (y1,t1) = T∞ ; 
 
t1 > 0, u1(0, t1 ) = V0, T1(0, t1 )  = TP, at  y1= 0 ;                      (4) 
 
t1 > 0, u1(∞, t1) = 0,T1(∞, t1)  = T∞, as  y1 → ∞. 

 
Since the plate is assumed to be porous and through it suction with uniform velocity occurs, 
equation (1) integrates to 001 (vvv −= >0) where (0v >0) is the constant suction velocity. From 

equation (1) we observe that 1v  is independent of space co-ordinates and may be taken as 
constant. We define the following non-dimensional variables and parameters. 

               t = ,, 10
2

01

v
yV

y
v
Vt

=   

            
∞

∞

−
−

==
TT
TT

T
V
u

u
P

1

0

1 , , 

      ,,
0

1

α
vP

V
v

r r ==  

   
( )

3
0

2
0

2
0 ,

V
TTvg

G
V

vB
M P

r
∞−

==
β

ρ
σ

 

In view of Eqs. (4) and (5) ,Equations (2) and (3) reduces to the following  
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With 
   t≤  0, u(y, t) = 0, T (y,t) = 0; 
                

 t > 0, u (0, t) = 1, T (0,t) = 1;                              (8) 
                

   t > 0, u (∞, t) = 0,T (∞,t) = 0.    
   
where the parameter ‘r’ represents suction or injection depending on whether it is positive or 
negative. The Grashof number rG  > 0 represents external cooling of the plate and rG  < 0 
denotes external heating of the plate. 
 
 

3. METHOD OF SOLUTION 
 

It is not possible to find analytical solution for equations (6) and (7) when Pr≠1 by known 
method which is the Laplace transform technique. Hence we sought a solution by finite 
difference technique of implicit type namely Crank- Nicolson implicit finite difference method 
which is always convergent and stable. This method has been used to solve equations (6) and (7) 
subject to the conditions given by Eqn. (8). To obtain the difference equations, the region of the 
flow is divided into a gird or mesh of lines parallel to y and t axes. Solution of difference 
equations are obtained at the intersection of these mesh lines called nodes (as in FIG.. (1)). The 
values of the dependent variables T and u at the nodal points along the planes y = 0 are given by 
T(0,t) and u(0,t) and hence are known from the boundary conditions. 

 

 
   FIGURE 1.  Finite difference grid 
 

In the above FIG..1, y∆ and t∆  are constant mesh sizes along y and t directions 
respectively. We need a scheme to find single values at next time level in terms of known values 
at an earlier time level. A forward difference approximation for the first order partial derivatives 
of T and u w.r.t. t and y and a central difference approximation for the second order partial 
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derivative of u and T w.r.t. y are used. 
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The finite difference approximation of equations (6) and (7) are obtained on substituting 
equation (9) into equations (6) and (7) . 
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4. NUMERICAL SOLUTIONS AND THEIR ACCURACY 
 

To get the numerical solutions of the temperature T and velocity u, we have taken the aid of 
the computer by developing a code (program) in Mathematica5.0. The logic of the program is 
divided into 3 modules as follows: 

Module 4.1: main, initially it creates two tables to hold the numerical solutions of temperature 
and velocity whose coefficients are allotted in the Module 2. After this, it calculates the 
numerical values at the next time step level. In order to do this, it uses another sub module 
named, TriDiagonal, which solves the tri-diagonal matrix by using Gauss-Elimination method. 
Further it moves to the Module 3, for comparison of numerical solutions with analytical 
solutions. 

Module 4.2: CoeffMat, we know that all the terms and their coefficients on RHS of eqn.(13) are 
known values from initial and boundary conditions. At every time step, for different values of 
‘i’, the finite difference approximation of equation (13) gives a linear system of equations. Then, 
for j = 0 and i = 1, 2,.. n-1, equation (13) gives a linear system of (n-1) equations for the (n-1) 
unknown values of ‘T’ in the first time row in terms of known initial and boundary values. This 
module maintains coefficients of this linear system of equations. 

Module 4.3: Comparison, It compares the numerical solution with the analytical solution at 
every time step level. 

To ensure the validity of our numerical solutions, we have compared our numerical solutions 
for temperature and velocity for the case of suction (r > 0) for unit Prandtl number with the 
available exact solutions in the literature. Table 1 and Table 2 show comparisons between the 
numerical values of temperature and velocity for PBrB =1 obtained from the present study and 
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analytical solution obtained by Revankar [4]. It was clearly seen from these tables that the 
percentage error decreases as the value of y approaches 1 from 0 for fixed time. Hence the 
results are in excellent agreement. The corresponding code (program) is written in Mathematica 
5.0 for calculating numerical solutions for temperature and velocity and the comparison 
between the exact and numerical solutions. The comparison tables, Table 1 and Table 2 have 
been plotted and shown in FIG 2 and FIG 3. As the accuracy of the numerical solutions is very 
good, the curves corresponding to exact and numerical solutions are laying very close to the 
other.  To ensure the efficiency of our code for velocity, we have given a table of numerical 
solution for velocity for water (PBrB =6.75) for both the cases of suction and injection. These 
values have been plotted under FIG 3 and 4 respectively. 

 
Code for comparison of temperature profiles for Pr =1 for the case of suction 

 
CNgrid[n_,m_]:= 

Module[{i,j}, 
  u=Table[1,{n},{m}]; 

For[ i=1,i≤ n,i++,   uB[[i,1 ]]B = f[i];  ];  
   For[ j=1,j≤m,j++,   uB[[1,j]]B = gB1B[j];   uB[[n,,j]]B = gB2B[j]; ]; ];                         

 
TriDiagonal[a0_,d0_,c0_,b0_]:= 

Module[{a=a0,b=b0,c=c0,d=d0,k,m,n=Length[b0],x}, 
                      For[k=2,k≤ n,k++, 

            dB[[k]] B= dB[[k]]B –  (aB[[k-1]]B / dB[[k-1]]B ) * cB[[ k-1]]B ; 
            bB[[k]] B= bB[[k]]B –  (aB[[k-1]]B / dB[[k-1]]B ) * bB[[ k-1]]B ; ]; 
x=Table[ 0, {n} ]; xB[[n]]B=  bB[[n]] B/ dB[[n]] ; 

 
For[ k=n-1; 1≤  k; k--, XB[[k]]B = ( bB[[k]]B – cB[[k]] B* xB[[k+1]]B) / dB[[k]] B; ]; 
Return [x]; ]; 

Comparison[n_,m_]:= 
Module[{}, 

  Print["Complete Table"]; 
  Print[" t        y          Exact         Numerical    Error"];         

Print["                      Solution       Solution    %   "]; 
Print["===================================="];   
result=Table["---------",{(m*n)+m-20},{5}]; 
row=1;t=0; 
For[i=2,i≤m,i++, 
   t=t+k; y=-0.05; 

  For[j=1,j≤ n,j++, 
           y=y+h;      eta=(y/(2* t )); 

                answer=0.5*(eP-(R*y)P * Erfc[eta – 0.5 *R * t ]+ Erfc [eta + 0.5 *R * t ]; 
               resultB[[row,,1]] B= t;resultB[[row,,2]] B= y; resultB[[row,,3]]B = answer; 

   resultB[[row,,4]]B = uB[[j,i]];   BresultB[[row,5]] B= Abs[(answer – uB[[j,i]]B) / 100]; 
row=row+1;]; 
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               resultB[[row,1]]B = “ -------“; resultB[[row,2]]B = “ --------“;  resultB[[row,3]]B = “ ----
--“;  
               resultB[[row,4]]B = “ -------“;resultB[[row,5]]B = “ ------“; row=row+1;
  ]; ]; 
 

a=1.0;  b=0.1; c=1; n=21;     m=41;  R=1; 
F[x_]=0;    GB1B[t_]=1.0;    GB2B[t_]=0.0; 

h = a / (n-1);   k= b/(m-1); 
f[i_]=F[h(i-1)]; gB1B[j_]=GB1B[k ( j -1 ) ]; gB2B[j_]=GB2B[k ( j - 1 )]; 

 
CNgrid[n,m]; r=(cP2P * k) / hP2P ; 

Va=Vc=Table[-1,{n-1}];   VaB[[n-1]]B = VcB[[1]]B = 0; Vd = Table[ 2 + (2 / r) , {n} ]; 
VdB[[1]]B = Vd B[[n]]B = 1; 

 
            b=Table[0,{n}]; 

For[j=2,j≤m,j++,     bB[[1]]B = gB1B[j];  bB[[n]]B = gB2B[j]; 
For[i=2, i≤  n-1, i++, 

bB[[i]]B =(0.5-((R*k)/(4*h)))*uB[[i-1,j-1]]B + uB[[i,,j-1]]B +(0.5+((R*k)/(4*h))))* uB[[i+1,j-1]]B + 
((R*k)/(4*h))*(uB[[i+1, j]]B - uB[i-1, j]]B); ]; 

uB[[All,j]]B = TriDiagonal [Va, Vd, Vc, b];  
 
Print[NumberForm[ TableForm[ N[ Transpose[ Chop[u] ]],TableSpacing->{0,2} ]]]; 
Comparison[n,m]; 
Print[  TableForm[    result ,TableSpacing ->{0,2}     ]]; 
 
 

Output: 
 

TABLE 1. Comparison of Temperature profiles for PBrB=1 for the case of suction 
 

 t        y   analytical  numerical  %error 
0.0175 0 1 1 0
0.0175 0.05 0.769144 0.746934 0.000222
0.0175 0.1 0.563228 0.521945 0.000413
0.0175 0.15 0.391358 0.340726 0.000506
0.0175 0.2 0.257307 0.207989 0.000493
0.0175 0.25 0.159694 0.119069 0.000406
0.0175 0.3 0.093375 0.064201 0.000292
0.0175 0.35 0.051353 0.032769 0.000186
0.0175 0.4 0.026528 0.015915 0.000106
0.0175 0.45 0.012857 0.007387 5.47E-05
0.0175 0.5 0.00584 0.003276 2.56E-05
0.0175 0.55 0.002485 0.001358 1.13E-05
0.0175 0.6 0.000989 0.000451 5.39E-06
0.0175 0.65 0.000369 5.52E-05 3.13E-06
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Code for comparison of velocity profiles for PBrB =1 
CNgrid[n_,m_]:= 
      Module[{i,j}, 
              u=Table[1,{n},{m}]; su= Table[1,{n},{m}]; 
              For[i=1,i≤ n,i++,   uB[[i,1]]B=f[i]; suB[[i,1]]B=f[i];]; 
             For[j=1,j ≤ m,j++,   uB[[1,j]]B=gB1B[j]; suB[[1,j]]B=gB1B[j]; uB[[n,j]]B=gB2B[j]; 
suB[[n,j]]B=gB2B[j];]; 
 
TriDiagonal[a0_,d0_,c0_,b0_]:= 
    Module[{a=a0,b=b0,c=c0,d=d0,k,m,n=Length[b0],x}, 
       For[k=2,k≤ n,k++,   dB[[k]]B= dB[[k]]-(B aB[[k-1]] / BdB[[k-1]]) B* cB[[k-1]]B;  
                                          bB[[k]]B= bB[[k]]-(B aB[[k-1]] / BdB[[k-1]]) B* bB[[k-

1]]B; 
        x=Table[0,{n}];        xB[[n]]B= bB[[n]]B / dB[[n]] ; 

B       B  For[k=n-1,1≤ k,k--, xB[[k]]B= (bB[[k]]B – (cB[[k]]B * xB[[k+1]]B ))/ dB[[k]]B;]; 
      Return[x];  ]; 
 

0.0175 0.7 0.000128 0.000482 3.53E-06
0.0175 0.75 4.18E-05 0.001022 9.81E-06
0.0175 0.8 1.27E-05 0.001814 1.8E-05
0.0175 0.85 3.60E-06 0.002948 2.94E-05
0.0175 0.9 9.55E-07 0.004455 4.45E-05
0.0175 0.95 2.36E-07 0.006276 6.28E-05
0.0175 1 5.45E-08 0 5.45E-10

          FIGURE 2: Comparison of Temperature for P BrB=1 

Analytical Solution 

Numerical Solution 
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Comparison[n_,m_]:= 
Module[{}, 

  Print["Complete Table"]; 
  Print[" t         y         Exact            Numerical        
Error"];         

Print["                      solution          Solution          %   
"]; 

Print["===================================="];   
result=Table["---------",{(m*n)+m-20},{5}]; 
row=1;t=0; 
For[i=2,i ≤m,i++, 
   t=t+k; y=-0.05; 
   For[j=1,j ≤ n,j++, 
           y=y+h;  eta=(y/(2* t )); 
                   z= M)R)*R*(((1/4) + ; 
                   expr1=1-(GBrB/M)+ e P-2*R*eta*M * t P;  

                    expr2= e P-2*eta *P t P *z P *  Erfc[eta-z* t )]P P; 
                    expr3= e P2*eta *P t P *z P *  Erfc[eta+z* t )]P P; 
                    expr4=0.5*(GBrB/M)* e P-2*eta *P t P * PErfc[eta-

((R/2)* t )]; 
                     expr5=0.5*(GBrB/M)* e P2*eta *P t P * 

PErfc[eta+((R/2)* t )];; 
                     expr6=1- e P-(M) * tP; 

                  answer=expr1*(expr2+expr3)+ expr4+expr5; 
                 resultB[[row,,1]] B= t;resultB[[row,,2]] B= y; resultB[[row,,3]]B = answer; 

   resultB[[row,,4]]B = uB[[j,i]];   BresultB[[row,5]] B= Abs[(answer – uB[[j,i]]B) / 100]; 
row=row+1;]; 

                 resultB[[row,1]]B = “ ---------“; resultB[[row,2]]B = “ ---------“;  
resultB[[row,3]]B = “ --------“;  
                 resultB[[row,4]]B = “ -------“;resultB[[row,5]]B = “ --------“; row=row+1;
  ]; ]; 
a=1.0; b=0.1; c=1; sc=1; n=21; m=41; GBrB =2; M=3; R=0.5; 
F[x_]=0; GB1B[t_]=1.0; GB2B[t_]=0.0; 
h= a/(n-1);  k=b/(m-1); 
f[i_]=F[h(i-1)]; gB1B[j_]=GB1B[k(j-1)]; g2[j_]=GB2B[k(j-1)]; CNgrid[n,m]; 
r=(cP2P*k)/hP2P ;   sr=(scP2P*k)/hP2P ; tr=0.5; 
 
Va=Vc=Table[-1,{n-1}];   VaB[[n-1]]B = VcB[[1]]B = 0; Vd = Table[ 2 + (2 / r) , {n} ];   
sVd = Table[ 2 + (2 /s r) , {n} ];  VdB[[1]]B = Vd B[[n]]B = 1; sVdB[[1]]B = sVd B[[n]]B = 1;  
 
b=Table[0,{n}]; 
For[j=2,j≤m,j++,     bB[[1]]B = gB1B[j];  bB[[n]]B = gB2B[j]; 
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    For[i=2, i≤  n-1, i++,  bB[[i]]B=uB[[i-1,j-1] B+ ((2/sr)-2)* uB[[i,j-1]B+ uB[[i+1,j-1]B;]; 
    uB[[All,j]]B = TriDiagonal [VBaB,VBd,BVBc,Bb];]; 
 
sb=Table[0,{n}] 
For[j=2,j≤m,j++,     sbB[[1]]B = gB1B[j];  sbB[[n]]B = gB2B[j]; 
  For[i=2,i≤ n-1,i++, 
            SbB[[i]]B=suB[[i-1,j-1]]B+((2/sr)-2)*suB[[i,j-1]]B + suB[[i+1,j-1]]B + (R/4)*h*(( suB[[i+1,j-

1]]B- suB[[i-1,j]]B))+ 
              (R/4)*h*(( suB[[i+1,j-1]]B- suB[[i-1,j-1]]B))+(GBrB*h*h*(uB[[i,j-1]]B+uB[[i,j]]B))-
(2*M*h*h* suB[[i+1,j-1]B);]; 
  suB[[All,j]]B = TriDiagonal [VBaB,sVBd,BVBcB,sb];]; 
 
Print[NumberForm[ TableForm[ N[ Transpose[ Chop[u] ]],TableSpacing->{0,2} ]]]; 
Print[NumberForm[ TableForm[ N[ Transpose[ Chop[su] ]],TableSpacing->{0,2} ]]]; 
Comparison[n,m]; 
Print[    TableForm[    result ,TableSpacing->{0,2}     ]]; 
 
 

Output: 
 

TABLE 2.  Comparison of velocity for Pr =1, M=2, R=0.5 
 

         t y   analytical  numerical  %error 
0.005 0 1 1 0
0.005 0.05 0.647309 0.618802 0.000285
0.005 0.1 0.348037 0.331615 0.000164
0.005 0.15 0.152804 0.133284 0.000195
0.005 0.2 0.054119 0.047618 6.5E-05
0.005 0.25 0.015329 0.015949 6.2E-06
0.005 0.3 0.003451 0.005128 1.68E-05
0.005 0.35 0.000615 0.001603 9.88E-06
0.005 0.4 8.64E-05 0.000491 4.05E-06
0.005 0.45 9.54E-06 0.000148 1.38E-06
0.005 0.5 8.28E-07 4.41E-05 4.32E-07
0.005 0.55 5.64E-08 1.3E-05 1.29E-07
0.005 0.6 3.01E-09 3.80E-06 3.79E-08
0.005 0.65 1.25E-10 1.10E-06 1.1E-08
0.005 0.7 4.09E-12 3.18E-07 3.18E-09
0.005 0.75 1.04E-13 9.13E-08 9.13E-10
0.005 0.8 2.08E-15 2.61E-08 2.61E-10
0.005 0.85 3.24E-17 7.42E-09 7.42E-11
0.005 0.9 3.93E-19 2.09E-09 2.09E-11
0.005 0.95 3.73E-21 5.49E-10 5.49E-12
0.005 1 2.76E-23 0 2.76E-25
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 FIGURE 3:  Comparison of velocity for Pr =1, M=2, R=0.5 

FIGURE 4a. Numerical solution for velocity in case 
of suction for water(R=0.5, M=2) 

Numerical Solution 

Analytical Solution 
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FIGURE 4b. Numerical solution for the case of injection for water(R=-0.5, M=2) 
 

t y 
Numerical 

Solutions(R=0.5)
0.1 0 1 
0.1 0.05 0.910932 
0.1 0.1 0.822971 
0.1 0.15 0.737182 
0.1 0.2 0.654549 
0.1 0.25 0.575941 
0.1 0.3 0.502082 
0.1 0.35 0.433536 
0.1 0.4 0.370691 
0.1 0.45 0.313758 
0.1 0.5 0.262779 
0.1 0.55 0.217635 
0.1 0.6 0.178064 
0.1 0.65 0.143685 
0.1 0.7 0.114013 
0.1 0.75 0.088485 
0.1 0.8 0.06648 
0.1 0.85 0.047331 
0.1 0.9 0.030345 
0.1 0.95 0.014809 
0.1 1 0 

TABLE 3: Numerical solution for velocity in case of 
suction for water(R=0.5, M=2) 
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5. RESULTS AND DISCUSSION 
 

For the purpose of discussing the results some numerical calculations are carried out for non-
dimensional temperature T, velocity u, skin friction τ  and the Nusselt number uN , by 
making use of it, the rate of heat transfer was studied. 

The temperature profiles for water (Pr = 6.75) for the case of suction are shown in FIG..(5.5) 
and for air (Pr = 0.733) for the case of injection are drawn in Fig (5.6). When the suction 
parameter r increases and t is kept fixed, the temperature increasing in the case of water which 
can be seen from FIG.. (5.5). Also from the same Figure, when r is kept fixed and t is increased, 
the temperature still increases. FIG..(5.6) reveals that for air (Pr =0.733) for the case of injection, 
a decrease in r for fixed t, temperature decreases and when r is kept fixed and t increases, the 
temperature also increases.  The effect of time t, magnetic field parameter M and the injection 
parameter r, for heating of the plate on the velocity profiles are predicted in FIG..(5.7). As time 
increases the velocity profiles increases. While the injection parameter r decreases, velocity also 
decreases. Similarly the effect of t, M and r for cooling of the plate on velocity profiles are 

t y 

Numerical 
Solutions(R=-
0.5) 

0.1 0 1 
0.1 0.05 0.910932 
0.1 0.1 0.822971 
0.1 0.15 0.737182 
0.1 0.2 0.654549 
0.1 0.25 0.575941 
0.1 0.3 0.502082 
0.1 0.35 0.433536 
0.1 0.4 0.370691 
0.1 0.45 0.313758 
0.1 0.5 0.262779 
0.1 0.55 0.217635 
0.1 0.6 0.178064 
0.1 0.65 0.143685 
0.1 0.7 0.114013 
0.1 0.75 0.088485 
0.1 0.8 0.06648 
0.1 0.85 0.047331 
0.1 0.9 0.030345 
0.1 0.95 0.014809 
0.1 1 0 

TABLE 4. Numerical solution for the case of suction 
for water (R=-0.5, M=2) 
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predicted as shown in FIG..(5.12). as the suction parameter ‘r’ increased by keeping t, M, Gr 
fixed, the velocity increases. 

The Skin friction at the plate for the case of suction and injection at different rG  are 
predicted as can be seen from FIG.S. (5.8) and (5.9). From FIG.. (5.8), it follows when rG  is 
kept fixed and r is increased, then the skin friction increases and as r is kept fixed and rG  is 
increased, the skin friction decreases. The skin-friction for the case of injection is depicted in 
FIG.. (5.9). When r is decreased and rG  is kept fixed, an increase in skin friction is noticed 
and when r is fixed and rG  is decreased, a decrease in skin friction is noticed. 

From the technological point of view, it is important to know the rate of heat transfer between 
the plate and the fluid. This can be found by using the non-dimensional quantity, the Nusselt 
number uN . The numerical values of the Nusselt number against time t are shown in FIGS. 
(5.10) and (5.11). FIG.. (5.10) shows the heat transfer for different suction parameter r. As t 
increases, the rate of heat transfer increases too. As r increases for the same t, the Nusselt 
number increases. FIG.. (5.11) shows the rate of heat transfer for the case of injection. Here too, 
as time increases, the heat transfer increases gradually.  

The conclusions of the present chapter have already been stated under the  above section of 
Results and Discussion. 
 
 
6. STABILITY AND CONVERGENCE FOR THE FINITE DIFFERENCE SCHEME 
 

The stability criterion of the present implicit finite difference scheme for constant mesh sizes 
are examined by using Von Neumenn analysis as explained by Carnahan et al[11]. The general 
terms of the fourier expansions for u and T at a time arbitrarily called t=0 are both exp(i )xα  

)exp( yiβ ( )1, −=iwhere . At a later time t, these terms will become 

    u=F ( ) ( ) ( )yixit βα expexp   
    T=G ( ) ( ) ( )yixit βα expexp                         (14) 
 
Now the implicit finite difference scheme, the equations (6) and (7) respectively become      
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Now substituting (14) in (15) and (16) we have, 

t
FF

∆
−′

=
( )[ ]

( )y
yiFFr

∆
∆+′−

2
sin β

+
( )( )

( )2

1cos
y

yFF
∆
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GGGr +′

-
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2
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,                 (17) 

t
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On simplifying and rearranging the terms in the above equations, we get 

    FF −′  = ( FF +′ )
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GG −′  = ( GG +′ ) 
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The above equations can be written as follows: 

(1+A) F ′  = (1-A)F + 
( )

2
tGGGr ∆+′

,        (21) 

(1+B)G ′  = (1-B)G.                 (22) 
where 
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Using equation (21), equation (22) becomes, 

    F ′  = 
( )
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where 1D = ( )( )BA
tGr

++
∆
11

. 

Expressing the above equations in matrix form, we have  
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Now for stability the modulus of each eigen value of the amplification matrix should not exceed 
unity. The eigen values of the amplification matrix are 

1λ = 
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, 

and  
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Now to prove that  
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and  
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Let  
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We can write A as  
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Since the real part of -A is greater than or equal to 0, the reader may note that ∆t and ∆y can be 
chosen arbitrarily, 

 
hence  1λ ≤  1 always. 

 
Similarly we can write B as  

 

B= ( ) ⎥
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Since real part of B is greater or equal to 0, 
hence  2λ 1≤ always. 
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Hence the Scheme is unconditionally stable. Local truncation error is 0 ( ) ( )( )22 yt ∆+∆  and 
tends to zero as t∆ . Hence the Scheme is compatible. Stability and compatibility ensures 
convergence. 
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