• Title/Summary/Keyword: Successive residual method

Search Result 25, Processing Time 0.027 seconds

Residual Stress Measurement for Circular Disk Using Fraction Mechanics Approach (파괴역학을 이용한 원판형 부재의 잔류응력 측정)

  • 강기주;최성렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1218-1226
    • /
    • 1993
  • A method, so called 'successive cracking method,' for measuring residual stresses in a circular disk is proposed. In this method residual stresses are evaluated using a fracture mechanics approach, that is, the strains measured at a point on a edge of the disk as a crack is introduced and extended from the edge are used to deduce the residual stress distribution which existed in the uncracked disk. Through finite element analysis and comparative experiments with generally used sectioning method, the successive cracking method is shown to be valid, simple and effective to measure 2-dimensional residual stress distribution in a circular disk.

Rheological Properties of Acorn Flour Gels by Stress Relaxation Test (응력완화 검사(stress relaxation test)에 의한 도토리묵의 물리적 특성)

  • 김영아;이혜수
    • Korean journal of food and cookery science
    • /
    • v.1 no.1
    • /
    • pp.53-56
    • /
    • 1985
  • The rheological models of acorn flour gels with different concentrations were investigated by stress relaxation test. The analysis of relaxation curves by successive residual method revealed that the rheological behavior of acorn flour gels could be expressed by the 7-element, generalized Maxwell model. The equilibrium modulus and modulus of elasticity increased by the increment of acorn flour concentration.

  • PDF

Residual Stress Prediction in Multi-layer Butt Weld Using Crack Compliance Method (컴플라이언스법에 의한 다층 맞대기 이음의 잔류응력 추정)

  • Kim, Yooil;Lee, Jang Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.74-79
    • /
    • 2012
  • It depends on the joint configuration, dimensions and constraints of the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of welded joint in order to prevent excessively long life caused by compressive residual stress. In this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial term. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface is positive valued, however, it turned into the negative value as soon as it passed through 2 or 3 mm of the depth.

A Study on the Stabilization of Gun Barrel by Viscoelastic Damping Material (점탄성 감쇠재료를 이용한 포신 잔류진동의 조기 안정화 방안연구)

  • 임재희;백판구;이재영;정백기
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.714-719
    • /
    • 1999
  • Because the residual vibration of a gun barrel acts negatively on the firing of a large calibers gun, the fast stabilization of theresidual vibration is indispensible to the precise and successive firing. In this study, the residual vibrations of a gun barrel carrying a bore evacuator and a muzzle brake are investigated by the experimental method. The influence of the eigenfrequencies and the mode shapes of gun barrel on the fast stabilization of the residual vibration is studied for the various masses of bore evacuator and muzzle brake, the possition of bore evacutor. Also the relationships between the funcamental frequencies and the settling times of the gun barrel are investigated for the various parameters. The experiments to reduce the residual vibration using the viscoelastic damping treatment gives the best result among the various treatments for the reduction of residual vibration of the system.

  • PDF

PREDICTION OF RESIDUAL STRESS PROFILE IN SINGLE-SIDED BUTT WELD USING COMPLIANCE METHOD

  • Kim, Yooil;Jeon, Yu-Chul;Kang, Joong-Kyoo;Han, Yong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.156-161
    • /
    • 2002
  • It depends on the joint configuration, dimensions and constraints on the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of this type of joint in order to prevent excessively long life caused by compressive residual stress. in this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial tenn. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface stayed positive, however, it turned into the negative value as soon as it passed through 2 or 3 mm depth. Several fatigue tests were also carried out under zero stress ratio. Test results showed that fatigue life coincides well with the design cuive of butt joint in British Standards, which supports that it is tensile residual stress that exists near the weld root.

  • PDF

A study on the stress and strain during welding of plate-to-pipe joint (평판-관 구조물 용접시 발생하는 응력 및 변형율에 관한 연구)

  • 나석주;김형완
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.30-39
    • /
    • 1986
  • In manufacturing of pipe walls for boiler units, distortion can result in pipe-web-pipe joints from the nonuniform expansion and contraction of the weld metal and the adjacent base metal during heating and cooling cycle of the welding process. In this study, the stresses and strains during longitudinal welding of the plate-to-pipe joint were investigated. Using the method of successive elastic solution, longitudinal stresses and strains during and after welding were calculated from the information of temperature distributions obtained by Rosenthal's equations. In order to confirm the validity of the numerical results, the temperature and residual stress distributions were measured and compared with the calculated results. In spite of some assumptions, the one-dimensional analytical results of residual stresses were in fairly good agreement with the experimental ones. The residual stresses due to welding of plate-to-pipe joints are tensile near the weld line and compressive in the base metal as in the welding of plates. the amount and distribution of residual stresses were deeply dependent on the heat input ratio of the plate and pipe.

  • PDF

Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation

  • Kim, Sang-Kyun;Lee, Seok-Won;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.107-114
    • /
    • 2002
  • Residual stress distribution in injection molded short fiber composites is determined by using the layer-removal method. Polystyrene is mixed with carbon fibers of 3% volume fraction (4.5% weight fraction) in an extruder and the tensile specimen is injection-molded. The layer-removal process, in which removing successive thin uniform layers of the material from the surface of the specimen by a milling machine, is employed and the resulting curvature is acquired by means of an image processing. The isotropic elastic analysis proposed by Treuting and Read which assumes a constant Yaung’s modulus in the thickness direction is one of the most frequently used methods to determine residual stresses. However, injection molded short fiber composites experience complex fiber orientation during molding and variation of Yaung’s modulus distribution occurs in the specimen. In this study, variation of Yaung’s modulus with respect to the thickness direction is considered for calculation of the residual stresses as proposed by White and the result is compared with that by assuming constant modulus. Residual stress distribution obtained from this study shows a typical stress profile of injection-molded products as reported in many literatures. Young’s modulus distribution is predicted by using numerical methods instead of experimental results. For the numerical analysis of injection molding process, a hybrid FEM/FDM method is used in order to predict velocity, temperature field, fiber orientation, and resulting mechanical properties of the specimen at the end of molding.

Data Reliability in a Partially Self-Checking Network (불완전 self-checking network에 있어서의 데이터신뢰도)

  • 오영돈
    • 전기의세계
    • /
    • v.27 no.4
    • /
    • pp.41-44
    • /
    • 1978
  • Intermittent failures exercise their effects only part of the time but constitute a dominant factor for the field failures. We consider the data raliability of the partially self-checking network with which a single intermittent failure will be recovered by a rollback method. Even if the self-testingness of partially self-checking network is guranteed for a set of permanent failures, it sometimes may not be so for intermittent failures. We introduce the notion of error residual and provide the basis for calculating the data reliability. Both the duration of each intermittent failure and the occurrence interval of successive ones are assumed to be negative exponentially distributed; the convolution of the intervals is distributed according to an Erlangen distribution.

  • PDF

Application of the Unstructured Finite Element to Longitudinal Vibration Analysis (종방향 진동해석에 비구조적 유한요소 적용)

  • Kim Chi-Kyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.39-46
    • /
    • 2006
  • This paper analyzes the continuous Galerkin method for the space-time discretization of wave equation. The method of space-time finite elements enables the simple solution than the usual finite element analysis with discretization in space only. We present a discretization technique in which finite element approximations are used in time and space simultaneously for a relatively large time period called a time slab. The weighted residual process is used to formulate a finite element method for a space-time domain. Instability is caused by a too large time step in successive time steps. A stability problem is described and some investigations for chosen types of rectangular space-time finite elements are carried out. Some numerical examples prove the efficiency of the described method under determined limitations.