• 제목/요약/키워드: Subway Load

검색결과 84건 처리시간 0.03초

지하철 역사의 구조 및 특성을 고려한 동력부하밀도 분석 (Power Load Density Analysis considering Structure and Characteristics of Subway Stations)

  • 정현기;차광석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.912-920
    • /
    • 2006
  • The purpose of this study is to present the design standard for load density in subway station. From the data of electric equipment capacity and electric power consumption for 43 subway stations, current levels of the load density and excess capacity factor were surveyed and analyzed, In addition mean value, standard deviation, maximum value, median value and correlation coefficient were evaluated through excel program. Also it was carried out the regression analysis. The estimation method of load density and design criterion were studied. As a result, load density in this thesis have been proposed : 51.3 $[VA/m^2]$ on the general power load can be a standard value for subway station.

  • PDF

지하철 역사전기설비의 수용률 기준설정에 관한 연구 (A Study on the Guidelines for Demand Factor of Electrical Facilities in Subway Stations)

  • 장수용;김학련
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.844-849
    • /
    • 2006
  • The electric facilities for subway stations require reliable and safe electricity in spite of their load increases rapidly. Nevertheless, Korea Electrical Safety Corporation reports that the accidents of independent electric facilities increased greatly from 4,632 cases in 1998 to 6,024 in 1999 and 6,776 cases in 2000, while the ratio of the accidents related with transformers grew gradually. As it is, it is deemed very important to minimize the spreading effects of the electric system accidents and thereby, enhance reliability of the electric supply as well as its safety. According to the fact that the electric facilities for subway stations are important for the public safety and conveniences, it should be careful to set their capacity instead of simply applying the general capacity standard to them, and thereby, improve their economy as well as prevent their accidents. With such a basic conception in mind, this study is aimed at analyzing the characteristics of the electric load in the subway stations and thereupon, suggesting some guidelines for setting of the electric facility capacity for subway stations in terms of optimal operation and safety.

  • PDF

퇴적암 지역에서의 교각 기초 하중을 받는 기존터널의 안정성에 대한 해석적 고찰 (Stability Analysis of Existing Tunnel in Stratified Sedimentary Rocks Subjected to Bridge Pier Load)

  • 김교원
    • 지질공학
    • /
    • 제8권2호
    • /
    • pp.153-161
    • /
    • 1998
  • 경상계 퇴적암은 층리가 잘 발달하고 있어 강도 및 변위 특성은 이방성을 띄기 때문에 터널 등 지반 특성과 밀접하게 관계되는 건설공사 시에 지반의 이방성 특성을 고려한 설계가 필요하다. 경상계 퇴적암을 기반암으로 하여 건설 중인 대구 지하철 2호선은 운영 중에 지하철 노선 상부에 건설되는 것으로 계획된 동서고가도로의 하중을 추가로 받게 된다. 교각 기초에 작용하는 76.2 MN의 고가도로 하중이 하부의 지하철 터널에 미치는 영향을 수치해석으로 검토하였다. 검토결과 지하철 터널 주변 지반은 추가 하중으로 인하여 5∼6 MPa의 응력을 받게되며 콘크리트 라이닝은 8∼10mm의 추가 변위를 받게되어 라이닝의 손상 가능성이 큰 것으로 나타났다. 따라서, 지하철 운영시의 안전을 위하여 고가도로 교각 기초 부근의 터널은 지하철 공사 시에 적절히 보강되어야 할 것으로 판단된다.

  • PDF

Serviceability assessment of subway induced vibration of a frame structure using FEM

  • Ling, Yuhong;Gu, Jingxin;Yang, T.Y.;Liu, Rui;Huang, Yeming
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.131-138
    • /
    • 2019
  • It is necessary to predict subway induced vibration if a new subway is to be built. To obtain the vibration response reliably, a three-dimensional (3D) FEM model, consisting of the tunnel, the soil, the subway load and the building above, is established in MIDAS GTS NX. For this study, it is a six-story frame structure built above line 3 of Guangzhou metro. The entire modeling process is described in detail, including the simplification of the carriage load and the determination of model parameters. Vibration measurements have been performed on the site of the building and the model is verified with the collected data. The predicted and measured vibration response are used together to assess vibration level due to the subway traffic in the building. The No.1 building can meet work and residence comfort requirement. This study demonstrates the applicability of the numerical train-tunnel-soil-structure model for the serviceability assessment of subway induced vibration and aims to provide practical references for engineering applications.

회귀분석이론을 이용한 지하철 역사의 조명부하밀도 분석 (Recommended Practice for Lighting Load Density by Feature Parameters and Regression Analysis depending on Power Consumption Characteristics in Subway Stations)

  • 정현기;김세동
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.254-259
    • /
    • 2006
  • It is increased electrical energy consumption with the development of intelligence society in the subway station and thus an energy conservation through efficient use of electricity became more important. This paper shows a reasonable design load density in subway stations, that was made by the systematic and statistical way considering actual conditions, such as investigated electric equipment capacity, peak power consumption, demand factor, etc., for 34 subway stations and 10 electrical design offices. In this dissertation, it is necessary to analyse the key features and general trend from the investigated data. It made an analysis of the feature parameters, such as average, standard deviation, median, maximum, maximum and thus it was carried linear and nonlinear regression analysis.

  • PDF

지하철 자갈도상 케도의 충격계수 평가 (Evaluation of Impact Factor on Ballast Track in Subway using Field Test)

  • 강기동;박용걸;최정열
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.784-791
    • /
    • 2006
  • This paper presents the test results to evaluate the healthiness of the ballast in subway. The test includes the dynamic load test in servicing Line the screen classification test of aggregates and the wear test. From the results, the aspect and the property of the ballast are evaluated. The dynamic load tests explain the relationship between the deterioration of the ballast and the fluctuation of loads. The assessment of impact factor based on the field test results in a good property of test blocks is proposed.

지하철 자갈도상 궤도의 충격계수 평가 (Evaluation of Impact Factor on Ballast Track in Subway using Field Test)

  • 박균서;손철수;윤종경;최정열;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.484-493
    • /
    • 2006
  • This paper is presented the test results to evaluate the healthiness of the ballast in subway. The test includes the dynamic load test in servicing Line the screen classification test of aggregates and the wear test. From the results, the aspect and the property of the ballast are evaluated. The dynamic load tests the relationship between the deterioration of the ballast and the fluctuation of loads. The assesexplain sment of impact factor based on the field test results in a good property of test blocks is proposed.

  • PDF

지중 RC 도시지하철고 구조물의 내진설계 (A Seismic Design of RC Underground Subway Structure)

  • 정제평;임동원;이성로;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

도시철도 지하역사 공기조화기의 미세먼지 저감성능 개선을 위한 사전연구 (Pre-study for the improvement of air filtration performance in the air handling unit of subway station)

  • 강중구;신창헌;배성준;권순박;김세영;한석윤
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.541-545
    • /
    • 2008
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator re used in the air handling unit (AHU) of subway station. However, those systems are faced to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts is malfunctioned due to the high load of particulates and the filter material needs periodic replacement. In this study, we surveyed the particle removal systems in order to develop the new system of particle removing can be adopted in the current AHU of subway station.

  • PDF

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.