• Title/Summary/Keyword: Substrates

Search Result 6,512, Processing Time 0.043 seconds

Estimate of Substrate Requirement by Mushroom Production Amounts (버섯 생산량에 의한 배지 소요량 추정)

  • Chang, Hyun-You
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.11 no.1
    • /
    • pp.159-171
    • /
    • 2009
  • Required total substrates amounts for mushroom production are 212,186M/T in Korea. 80% of these total substrates amounts, 169,748 M/T is used for main substrates. Also 20%of these total substrates amounts, 42,438 M/T is used for additives. Main substrates 169,748 M/T is composed of sawdust, waste cotton, cotton seed hull, straw and com cob etc.. Additives 42,438 M/T is composed of rice bran, wheat bran and beet pulp etc. In the mushroom management, the cost of substrates purchase is composed for the most of management. Substrates amount is limited to supply, and the demand of mushroom substrates is on the increase continuously. So there is nothing but the cost of substrates are raising. Therefore the most important thing must develop the cheap substrates for the mushroom production.

?Growth and Characterization of InGaN/GaN MQWs on Two Different Types of Substrate

  • Kim, Taek-Sung;Park, Jae-Young;Cuong, Tran Viet;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.90-94
    • /
    • 2006
  • We report on the growth and characterization of InGaN/GaN MQWs on two different types of sapphire substrates and GaN substrates. The InGaN/GaN MQWs are grown by using metalorganic chemical vapor deposition. Our analysis of the satellite peaks in the HRXRD patterns shows, GaN substrates InGaN/GaN MQW compared to sapphire substrates InGaN/GaN MQW, more compressive strain on GaN substrates than on sapphire substrates. However, results of optical investigation of InGaN/GaN MQWs grown on GaN substrates and on sapphire substrates, which have lower Stokes-like shift of PL to GaN substrates compared to sapphire substrates, are shown to the potential fluctuation and the quantum-confined Stark effect induced by the built-in internal field due to spontaneous and straininduced piezoelectric polarizations. The InGaN/GaN MQWs are shown to quantify the Stokes-like shift as a function of x.

Determination of Mineral Components in the Cultivation Substrates of Edible Mushrooms and Their Uptake into Fruiting Bodies

  • Lee, Chang-Yun;Park, Jeong-Eun;Kim, Bo-Bae;Kim, Sun-Mi;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • The mineral contents of the cultivation substrates, fruiting bodies of the mushrooms, and the postharvest cultivation substrates were determined in cultivated edible mushrooms Pleurotus eryngii, Flammulina velutipes, and Hypsizigus marmoreus. The major mineral elements both in the cultivation substrates and in the fruiting bodies were K, Mg, Ca, and Na. Potassium was particularly abundant ranging 10${\sim}$13 g/kg in the cultivation substrates and 26${\sim}$30 g/kg in the fruiting bodies. On the contrary, the calcium content in the fruiting bodies was very low despite high concentrations in the cultivation substrates, indicating Ca in the cultivation substrates is in a less bio-available form or the mushrooms do not have efficient Ca uptake channels. Among the minor mineral elements determined in this experiment, Cu, Zn, and Ni showed high percentage of transfer from the cultivation substrates to the fruiting bodies. It is noteworthy that the mineral contents in the postharvest cultivation substrates were not changed significantly which implies that the spent cultivation substrates are nutritionally intact in terms of mineral contents and thus can be recycled as mineral sources and animal feeds.

Morphological evolution of ZnO nanowires using varioussubstrates

  • Kar, J.P.;DAS, S.N.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • In recent years, ZnO nanostructures have drawn considerable attentions for the development of futuristic electronic devices due to their superior structural and optical properties. As the growth of ZnO nanowires by MOCVD is a bottom-up technique, the nature of substrates has a vital role for the dimension and alignment of the nanowires. However, in the pursuit of next generation ZnO based nanodevices, it would be highly preferred if well-ordered ZnO nanowires could be obtained on various substrates like sapphire, silicon, glass etc. Vertically aligned nanowires were grown on A and C-plane sapphire substrates, where as nanopencils were obtained on R-plane sapphire substrates. In addition, C-axis oriented vertical nanowires were also found using an interfacial layer(aluminum nitride film) on silicon substrates. On the other hand, long nanowires were found on Ga-doped ZnO film on glass substrates. Structural and optical properties of the ZnO nanowires on various substrates were also investigated.

  • PDF

Use of 1.7 kV and 3.3 kV SiC Diodes in Si-IGBT/ SiC Hybrid Technology

  • Sharma, Y.K.;Coulbeck, L.;Mumby-Croft, P.;Wang, Y.;Deviny, I.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1356-1361
    • /
    • 2018
  • Replacing conventional Si diodes with SiC diodes in Si insulated gate bipolar transistor (IGBT) modules is advantageous as it can reduce power losses significantly. Also, the fast switching nature of the SiC diode will allow Si IGBTs to operate at their full high-switching-speed potential, which at present conventional Si diodes cannot do. In this work, the electrical test results for Si-IGBT/4HSiC-Schottky hybrid substrates (hybrid SiC substrates) are presented. These substrates are built for two voltage ratings, 1.7 kV and 3.3 kV. Comparisons of the 1.7 kV and the 3.3 kV Si-IGBT/Si-diode substrates (Si substrates) at room temperature ($20^{\circ}C$, RT) and high temperature ($H125^{\circ}C$, HT) have shown that the switching losses in hybrid SiC substrates are miniscule as compared to those in Si substrates but necessary steps are required to mitigate the ringing observed in the current waveforms. Also, the effect of design variations on the electrical performance of 1.7 kV, 50 A diodes is reported here. These variations are made in the active and termination regions of the device.

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • Park, Ji-Yun;Jang, Seok-Jin;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

The Mechanical and Optical Properties of Diamond-like Carbon Films on Buffer-Layered Zinc Sulfide Substrates

  • Song, Young-Silk;Song, Jerng-Sik;Park, Yoon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 1998
  • Diamond-like carbon(DLC) films were deposited on buffer-layered ZnS substrates by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) method. Ge and GeC buffer layera were used between DLC and ZnS substrates to promote the adhesion of DLC on ZnS substrates. Ge buffer layers were sputter deposited by RF magnetron sputtering and $GeC^1$ buffer layers were deposited by same method except using acetylene reactive gas. The relatinship between film properties and deposition conditions was investigated using gas pressure, RF power and dc bias voltage as PECVD parameters. The hardness of DLC films were measured by micro Vickers hardness test and the adhesion of DLC films on buffer-layered ZnS substrates were studied by Sebastian V stud pull tester. The optical properties of DLC films on butter-layered ZnS substrates were characterized by ellipsometer and FTIR spectroscopy.

  • PDF

Measurement of Birefringence Distribution in Optical Disk Substrates Fabricated by Injection-Compression Molding (사출압축성형을 통한 광디스크 기판 성형 및 복굴절의 측정)

  • 김종성
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.218-224
    • /
    • 1999
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage devices with high storage density using short wavelength laser are being developed. Injection compression molding is regarded as the most suitable process to manufacture optical disk substrates with high is regarded as the most suitable process to manufacture optical disk substrates with high dimensional accuracy low residual stresses and superb optical properties In the present study polycarbonate optical disk substrates were fabricated by injection compression molding and the birefringence regarded as one of the most important optical properties for optical disk is measured. The effects of various processing conditions upon the development of birefringence distribution were examined experimentally. It was found that the value of the birefringence distribution were very sensitive to the mold wall temperature history and the variance of the birefringence distribution in the radial direction was affected by the level of the packing and the compression pressure.

  • PDF

Investigation of Charge Transfer between Graphene and Oxide Substrates

  • Min, Kyung-Ah;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.186.1-186.1
    • /
    • 2014
  • Graphene, which is a 2-dimensional carbon material, has been attracting much interest due to its unique properties and potential applications. So far, many interesting experimental and theoretical works have been done concerning the electronic properties of graphene on various substrates. Especially, there are many experimental reports about doping in graphene which is caused by interaction between graphene and its supporting substrates. Here, we report the study of charge transfer between graphene and oxide substrates using density functional theory (DFT) calculations. In this study, we have investigated the charge transfer related with graphene considering various oxide substrates such as SiO2(0001) and MgO(111). Details in charge transfer between graphene and oxides are analyzed in terms of charge density difference, band structure and work function.

  • PDF

LOW TEMPERATURE DIAMOND GROWTH USING MICROWAVE PLASMA CVD

  • Sakamoto, Yukihiro;Takaya, Matsufumi;Shinohara, Kibatsu
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.487-493
    • /
    • 1996
  • Diamond films were grown at lower temperatures (630-813K) on Si, Al (1100P), and Al-Si(8A, 8B, BC) alloy substrates using improved microwave plasma CVD apparatus in a mixed methane and hydrogen plasma. Improved microwave plasma CVD apparatus equipped water cooled substrate holder and the substrates were set up lower position than bottom line of the applicator waveguide. When the methane concentration was high and growth was conducted at lower pressures the diamond films were synthesized. Moreover the deposits on the scratched substrates formed flat surfaces consisting of fine grains. XRD results, the deposits were identified to cubic diamond. An analysis using Raman spectroscopy, further confirmed that diamond films deposited on the Si substrates were high quality. The deposits on the Al substrates, in contrast, contained amorphous carbon. While the quality of the deposits on the Al-Si substrates were differed with the substrate alloys.

  • PDF