DOI QR코드

DOI QR Code

Determination of Mineral Components in the Cultivation Substrates of Edible Mushrooms and Their Uptake into Fruiting Bodies

  • Lee, Chang-Yun (Greenpeace Mushroom Co) ;
  • Park, Jeong-Eun (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Kim, Bo-Bae (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Kim, Sun-Mi (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Ro, Hyeon-Su (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
  • Published : 2009.06.30

Abstract

The mineral contents of the cultivation substrates, fruiting bodies of the mushrooms, and the postharvest cultivation substrates were determined in cultivated edible mushrooms Pleurotus eryngii, Flammulina velutipes, and Hypsizigus marmoreus. The major mineral elements both in the cultivation substrates and in the fruiting bodies were K, Mg, Ca, and Na. Potassium was particularly abundant ranging 10${\sim}$13 g/kg in the cultivation substrates and 26${\sim}$30 g/kg in the fruiting bodies. On the contrary, the calcium content in the fruiting bodies was very low despite high concentrations in the cultivation substrates, indicating Ca in the cultivation substrates is in a less bio-available form or the mushrooms do not have efficient Ca uptake channels. Among the minor mineral elements determined in this experiment, Cu, Zn, and Ni showed high percentage of transfer from the cultivation substrates to the fruiting bodies. It is noteworthy that the mineral contents in the postharvest cultivation substrates were not changed significantly which implies that the spent cultivation substrates are nutritionally intact in terms of mineral contents and thus can be recycled as mineral sources and animal feeds.

Keywords

References

  1. Alonso, J., Garcia, M. A., Perez-Lopez, M. and Melgar, M. J. 2003. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 44:180-188. https://doi.org/10.1007/s00244-002-2051-0
  2. Barelay, M. N., Macpherson, A. and Dixon, J. 1995. Selenium Content of a Range of UK Foods. J. Food Compos. Anal. 8:307-314. https://doi.org/10.1006/jfca.1995.1025
  3. Bystrzejewska-Piotrowska, G., Pianka, D., Bazal⁄a, M. A., Steborowski, R., Manjon, J. L. and Urban, P. L. 2008. Pilot study of bioaccumulation and distribution of cesium, potassium, sodium and calcium in king oyster mushroom (Pleurotus eryngii) grown under controlled conditions. Int. J. Phytoremediation 10:503-514. https://doi.org/10.1080/15226510802114987
  4. Clemens, S. 2006. Evolution and function of phytochelatin synthase. J. Plant Physiol. 163:319-332. https://doi.org/10.1016/j.jplph.2005.11.010
  5. Curvetto, N. R., Figlas, D., Devalis, R. and Delmastro, S. 2002. Growth and productivity of different Pleurotus ostreatus strains on sunflower seed hulls supplemented with NH4+ and/or Mn(II). Bioresour. Technol. 84:171-176. https://doi.org/10.1016/S0960-8524(02)00013-5
  6. Falandysz, J. 2008. Selenium in edible mushrooms. J. Environ. Sci. Health. C Environ. Carcinog. Ecotoxicol. Rev. 26:256-299.
  7. Gergely, V., Kubachka, K. M., Mounicou, S., Fodor, P. and Caruso, J. A. 2006. Selenium speciation in Agaricus bisporus and Lentinula edodes mushroom proteins using multi-dimensional chromatography coupled to inductively coupled plasma mass spectrometry. J. Chromatogr. A. 1101:94-102. https://doi.org/10.1016/j.chroma.2005.09.061
  8. Gonen Tasdemir, F., Yamac, M., Cabuk, A. and Yildiz, Z. 2008. Selection of newly isolated mushroom strains for tolerance and biosorption of zinc in vitro. J. Microbiol. Biotechnol. 18:483-489.
  9. Kwak, W. S., Jung, S. H. and Kim, Y. I. 2008. Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate. Bioresour. Technol. 99:2947-2955. https://doi.org/10.1016/j.biortech.2007.06.021
  10. Kim, Y. I., Bae, J. S., Huh, J. W. and Kwak, W. S. 2007a. Monitoring of feed-nutritional components, toxic heavy metals and pesticide residues in mushroom substrates according to bottle type and vinyl bag type cultivation. J. Anim. Sci. Technol. (Kor.). 49:67-78. https://doi.org/10.5187/JAST.2007.49.1.067
  11. Kim, Y. I., Bae, J. S., Jung, S. H., Ahn, M. H. and Kwak, W. S. 2007b. Yield and physicochemical characteristics of spent mushroom (Pleurotus eryngii, Pleurotus ostreatus and Flammulina velutipes) substrates according to mushroom species and cultivation types, J. Anim. Sci. Technol. (Kor.). 49:79-88. https://doi.org/10.5187/JAST.2007.49.1.079
  12. La Guardia, M., Venturella, G. and Venturella, F. 2005. On the chemical composition and nutritional value of pleurotus taxa growing on umbelliferous plants (apiaceae). J. Agric. Food Chem. 53:5997-6002. https://doi.org/10.1021/jf0307696
  13. Mattila, P., Konko, K., Eurola, M., Pihlava, J. M., Astola, J., Vahteristo, L., Hietaniemi, V., Kumpulainen, J., Valtonen, M. and Piironen, V. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49:2343-2348. https://doi.org/10.1021/jf001525d
  14. Rodriguez Estrada, A. E. and Royse, D. J. 2006. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresour. Technol. 98:1898-1906. https://doi.org/10.1016/j.biortech.2006.07.027
  15. Serafin Munoz, A. H., Kubachka, K., Wrobel, K., Gutierrez Corona, J. F., Yathavakilla, S. K., Caruso, J. A. and Wrobel, K. 2006. Se-enriched mycelia of Pleurotus ostreatus: distribution of selenium in cell walls and cell membranes/cytosol. J. Agric. Food Chem. 54:3440-3444. https://doi.org/10.1021/jf052973u

Cited by

  1. Breeding of New Strains of Mushroom by Basidiospore Chemical Mutagenesis vol.39, pp.4, 2011, https://doi.org/10.5941/MYCO.2011.39.4.272
  2. , and Development of Specific ITS Primers vol.41, pp.4, 2013, https://doi.org/10.5941/MYCO.2013.41.4.252
  3. Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents vol.48, pp.4, 2013, https://doi.org/10.1080/03601234.2013.743799
  4. and the Development of Specific DNA Markers to Identify the Variant Strain vol.42, pp.1, 2014, https://doi.org/10.5941/MYCO.2014.42.1.46
  5. Improvement of Zinc Bioaccumulation and Biomass Yield in the Mycelia and Fruiting Bodies of Pleurotus florida Cultured on Liquid Media vol.175, pp.7, 2015, https://doi.org/10.1007/s12010-015-1510-9
  6. Chemical composition and nutritive value of Pleurotus citrinopileatus var cornucopiae, P. eryngii, P. salmoneo stramineus, Pholiota nameko and Hericium erinaceus vol.52, pp.11, 2015, https://doi.org/10.1007/s13197-015-1826-z
  7. Identification of Wild Edible Mushrooms from Tropical Dry Deciduous Forest of Eastern Chota Nagpur Plateau, West Bengal, India vol.85, pp.1, 2015, https://doi.org/10.1007/s40011-014-0330-y
  8. Nutritional composition of bioproducts generated from semi-solid fermentation of pineapple peel by edible mushrooms vol.15, pp.12, 2016, https://doi.org/10.5897/AJB2015.14960
  9. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): an overview vol.20, pp.3, 2018, https://doi.org/10.1007/s10163-018-0739-0
  10. Agronomic and environmental factors affecting cultivation of the winter mushroom or Enokitake: achievements and prospects pp.1432-0614, 2019, https://doi.org/10.1007/s00253-019-09652-y