Browse > Article
http://dx.doi.org/10.4489/MYCO.2009.37.2.109

Determination of Mineral Components in the Cultivation Substrates of Edible Mushrooms and Their Uptake into Fruiting Bodies  

Lee, Chang-Yun (Greenpeace Mushroom Co)
Park, Jeong-Eun (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
Kim, Bo-Bae (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
Kim, Sun-Mi (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
Ro, Hyeon-Su (Department of Microbiology and Research Institute of Life Sciences, Gyeongsang National University)
Publication Information
Mycobiology / v.37, no.2, 2009 , pp. 109-113 More about this Journal
Abstract
The mineral contents of the cultivation substrates, fruiting bodies of the mushrooms, and the postharvest cultivation substrates were determined in cultivated edible mushrooms Pleurotus eryngii, Flammulina velutipes, and Hypsizigus marmoreus. The major mineral elements both in the cultivation substrates and in the fruiting bodies were K, Mg, Ca, and Na. Potassium was particularly abundant ranging 10${\sim}$13 g/kg in the cultivation substrates and 26${\sim}$30 g/kg in the fruiting bodies. On the contrary, the calcium content in the fruiting bodies was very low despite high concentrations in the cultivation substrates, indicating Ca in the cultivation substrates is in a less bio-available form or the mushrooms do not have efficient Ca uptake channels. Among the minor mineral elements determined in this experiment, Cu, Zn, and Ni showed high percentage of transfer from the cultivation substrates to the fruiting bodies. It is noteworthy that the mineral contents in the postharvest cultivation substrates were not changed significantly which implies that the spent cultivation substrates are nutritionally intact in terms of mineral contents and thus can be recycled as mineral sources and animal feeds.
Keywords
Edible mushroom; Flammulina; Hypsizigus; Mineral; Pleurotus; Substrate;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bystrzejewska-Piotrowska, G., Pianka, D., Bazal⁄a, M. A., Steborowski, R., Manjon, J. L. and Urban, P. L. 2008. Pilot study of bioaccumulation and distribution of cesium, potassium, sodium and calcium in king oyster mushroom (Pleurotus eryngii) grown under controlled conditions. Int. J. Phytoremediation 10:503-514.   DOI   ScienceOn
2 Falandysz, J. 2008. Selenium in edible mushrooms. J. Environ. Sci. Health. C Environ. Carcinog. Ecotoxicol. Rev. 26:256-299.
3 Gonen Tasdemir, F., Yamac, M., Cabuk, A. and Yildiz, Z. 2008. Selection of newly isolated mushroom strains for tolerance and biosorption of zinc in vitro. J. Microbiol. Biotechnol. 18:483-489.
4 Kwak, W. S., Jung, S. H. and Kim, Y. I. 2008. Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate. Bioresour. Technol. 99:2947-2955.   DOI   ScienceOn
5 Alonso, J., Garcia, M. A., Perez-Lopez, M. and Melgar, M. J. 2003. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 44:180-188.   DOI   ScienceOn
6 Kim, Y. I., Bae, J. S., Huh, J. W. and Kwak, W. S. 2007a. Monitoring of feed-nutritional components, toxic heavy metals and pesticide residues in mushroom substrates according to bottle type and vinyl bag type cultivation. J. Anim. Sci. Technol. (Kor.). 49:67-78.   DOI
7 Kim, Y. I., Bae, J. S., Jung, S. H., Ahn, M. H. and Kwak, W. S. 2007b. Yield and physicochemical characteristics of spent mushroom (Pleurotus eryngii, Pleurotus ostreatus and Flammulina velutipes) substrates according to mushroom species and cultivation types, J. Anim. Sci. Technol. (Kor.). 49:79-88.   DOI
8 Barelay, M. N., Macpherson, A. and Dixon, J. 1995. Selenium Content of a Range of UK Foods. J. Food Compos. Anal. 8:307-314.   DOI   ScienceOn
9 La Guardia, M., Venturella, G. and Venturella, F. 2005. On the chemical composition and nutritional value of pleurotus taxa growing on umbelliferous plants (apiaceae). J. Agric. Food Chem. 53:5997-6002.   DOI   ScienceOn
10 Mattila, P., Konko, K., Eurola, M., Pihlava, J. M., Astola, J., Vahteristo, L., Hietaniemi, V., Kumpulainen, J., Valtonen, M. and Piironen, V. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 49:2343-2348.   DOI   ScienceOn
11 Curvetto, N. R., Figlas, D., Devalis, R. and Delmastro, S. 2002. Growth and productivity of different Pleurotus ostreatus strains on sunflower seed hulls supplemented with NH4+ and/or Mn(II). Bioresour. Technol. 84:171-176.   DOI   ScienceOn
12 Rodriguez Estrada, A. E. and Royse, D. J. 2006. Yield, size and bacterial blotch resistance of Pleurotus eryngii grown on cottonseed hulls/oak sawdust supplemented with manganese, copper and whole ground soybean. Bioresour. Technol. 98:1898-1906.   DOI   ScienceOn
13 Clemens, S. 2006. Evolution and function of phytochelatin synthase. J. Plant Physiol. 163:319-332.   DOI   ScienceOn
14 Gergely, V., Kubachka, K. M., Mounicou, S., Fodor, P. and Caruso, J. A. 2006. Selenium speciation in Agaricus bisporus and Lentinula edodes mushroom proteins using multi-dimensional chromatography coupled to inductively coupled plasma mass spectrometry. J. Chromatogr. A. 1101:94-102.   DOI   ScienceOn
15 Serafin Munoz, A. H., Kubachka, K., Wrobel, K., Gutierrez Corona, J. F., Yathavakilla, S. K., Caruso, J. A. and Wrobel, K. 2006. Se-enriched mycelia of Pleurotus ostreatus: distribution of selenium in cell walls and cell membranes/cytosol. J. Agric. Food Chem. 54:3440-3444.   DOI   ScienceOn