• Title/Summary/Keyword: Substrate rotation

Search Result 63, Processing Time 0.017 seconds

Effect of Substrate Rotation on the Phase Evolution and Microstructure of 8YSZ Coatings Fabricated by EB-PVD

  • Park, Chanyoung;Choi, Seona;Chae, Jungmin;Kim, Seongwon;Kim, Hyungtae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The effect of substrate rotation speed on the phase forming behavior and microstructural variation of 8 wt% yttria ($Y_2O_3$) stabilized $ZrO_2$ (8YSZ) coatings as a thermal barrier coating has been investigated. 8YSZ coatings with $100{\sim}200{\mu}m$ thickness were deposited by electron beam-physical vapor deposition onto a super alloy (Ni-Cr-Co-Al) substrate with a bond coating (NiCo-CrAlY). The width of the columnar grains of the 8YSZ coatings increased with increasing substrate rotation speed from 1 to 30 rpm at a substrate temperature range of $900{\sim}950^{\circ}C$. In spite of the different growth behaviors of coatings with different substrate rotation speeds, the phases of each coating were not changed remarkably. Even after post heat treatments with various conditions of the coated specimens fabricated at 20 rpm, only a change of color was noticeable, without any remarkable change in the phase or microstructure.

A Study on the Rotation-Induced Birefringence in Plastic Disk Substrate (회전에 의해 플라스틱 기판에 추가로 발생하는 복굴절의 측정에 관한 연구)

  • 김종선;윤경환
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.730-737
    • /
    • 2003
  • Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical disk substrate Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. However, high speed rotation also induces extra stresses and birefringence in real operation of disk drives. In the present paper rotation-induced in-plane birefringence has been measured and presented for CD and DVD substrates at different radial position. About 10 - 15 nm of extra retardation in one pass has been measured up to 4,800 rpm. The distribution of extra rotation-induced birefringence will be valuable data for designing an optimal optical disk substrate. Finally, experimental results were compared with the extra stresses calculated from simple formulation.

Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성)

  • Ki-Won Lee;yeong-Hun Jo;Hyo-Jin Ahn
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

Numerical optimization of flow uniformity inside an under body- oval substrate to improve emissions of IC engines

  • Om Ariara Guhan, C.P.;Arthanareeswaran, G.;Varadarajan, K.N.;Krishnan, S.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.198-214
    • /
    • 2016
  • Oval substrates are widely used in automobiles to reduce the exhaust emissions in Diesel oxidation Catalyst of CI engine. Because of constraints in space and packaging Oval substrate is preferred rather than round substrate. Obtaining the flow uniformity is very challenging in oval substrate comparing with round substrate. In this present work attempts are made to optimize the inlet cone design to achieve the optimal flow uniformity with the help of CATIA V5 which is 3D design tool and CFX which is 3D CFD tool. Initially length of inlet cone and mass flow rate of exhaust stream are analysed to understand the effects of flow uniformity and pressure drop. Then short straight cones and angled cones are designed. Angled cones have been designed by two methodologies. First methodology is rotating flow inlet plane along the substrate in shorter or longer axis. Second method is shifting the flow inlet plane along the longer axis. Large improvement in flow uniformity is observed when the flow inlet plane is shifted along the direction of longer axis by 10, 20 and 30 mm away from geometrical centre. When the inlet plane is rotated again based on 30 mm shifted geometry, significant improvement at rotation angle of $20^{\circ}$ is observed. The flow uniformity is optimum when second shift is performed based on second rotation. This present work shows that for an oval substrate flow, uniformity index can be optimized when inlet cone is angled by rotation of flow inlet plane along axis of substrate.

A Study on the Rotation-induced Birefringence in Plastic Disk Substrate (회전에 의한 플라스틱 기판에 야기되는 복굴절의 측정에 관한 연구)

  • 김종선;윤경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.470-473
    • /
    • 2003
  • Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical disk substrate. Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. However, high speed rotation also induces extra stresses and birefringence in real operation of disk drives. In the present paper rotation-induced in-plane birefringence has been measured and presented for CD and DVD substrates at different radial position. About 10 - 15 nm of extra retardation has been measured up to 4,800 rpm.

  • PDF

Substrate-free Biosensing using Brownian Rotation of Bio-conjugated Magnetic Nanoparticles

  • Chung Seok-Hwan;Hoffmann Axel;Chen, Liaohai;Sun, Shouheng;Guslienko Konstantin;Grimsditch Marcos;Bader Samuel D.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.189-194
    • /
    • 2006
  • The recent development of bio-conjugated magnetic nanoparticles offers many opportunities for applications in the field of biomedicine. In particular, the use of magnetic nanoparticles for biosensing has generated widespread research efforts following the progress of various magnetic field sensors. Here we demonstrate substrate-free biosensing approaches based on the Brownian rotation of ferromagnetic nanoparticles suspended in liquids. The signal transduction is through the measurement of the magnetic ac susceptibility as a function of frequency, whose peak position changes due to the modification of the hydrodynamic radius of bio-conjugated magnetic nanoparticles upon binding to target bio-molecules. The advantage of this approach includes its relative simplicity and integrity compared to methods that use substrate-based stray-field detectors.

Growth of YIG Thick Films by the Change of Supercooling and Substrate Rotation Speed (과냉도 및 기판회전조건 변화에 따른 YIG 단결정 후막의 성장)

  • Kim, Yong-Tak;Yoon, Seok-Gyu;Kim, Geun-Young;Im, Young-Min;Jang, Hyun-Duck;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.498-502
    • /
    • 2002
  • Pure-yttrium iron garnet($Y_3Fe_5O_{12}$2, YIG) thick films were grown from a $PbO/B_2O_3$ flux onto (111) SGGG substrate using liquid phase epitaxy. The effect of substrate rotation speed and supercooling on crystallinity, chemical composition and growth rate of the thick films was investigated. The FWHM of films decreased with increasing of growth temperature from 860 to 910${\circ}C$. A substrate rotation speed of 120 rpm at 910${\circ}C$ lead to growth rates up to $60{\mu}m/h$.

The Evaluation of STS304 Coating Layer on S45C Substrate by Friction Surfacing Process (마찰 육성법을 이용한 S45C 탄소강에 대한 STS304의 코팅층 특성 평가)

  • Noh Joong-Suk;Cho Houn-Jin;Kim Heung-Ju;Chun Chang-Gun;Chang Woong-Seong
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.72-76
    • /
    • 2005
  • Friction surfacing of STS304 consumable rod on S45C substrate was investigated by microstructural observation and mechanical tests. STS304 layer formed a strongly-bonded thick layer under a wide range of surfacing conditions. The highest coating eefficiency was obtained in the condition of 1000rpm-2.5mm/sec-2.5mm/sec. The hardness distribution showed the peak value in the boundary layer and as the consumable rotation speed increased, the boundary layer also hardness increasing. As the consumable rotation speed and the traveling speed increased, the coating efficiency tended to decrease. On the other hand, as the feeding speed increased, the coating efficiency appeared to be increased. The new Fe-Cr-Ni alloy layer is showed in the interface layer on $5\~15{\mu}m$ width. After friction surfacing, corrosion resistance of STS 304 surfacing layers were equaled to that of STS304 consumable rod.

Material and Structure Optimization of Substrate Support for Improving CVD Equipment Up Time (CVD 장비 Up Time 향상을 위한 기판 지지대의 재질 및 구조 최적화)

  • Woo, Ram;Kim, Won Kyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.670-676
    • /
    • 2019
  • We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.

Effects of Animal Manure Compost, Tillage Method and Crop System on Soil Properties in Newly Organic Corn Cultivation Field (신규 유기농 옥수수 재배 시 가축분 퇴비, 경운방법 및 작부체계가 토양 환경에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Nam, Hong-Sik;Jung, Jung-A;Kong, Min-jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.31-43
    • /
    • 2018
  • This study was conducted to investigate the effects of organic farmland soil and nutrient management on soil properties depending on organic (animal manure compost and green manure [hairy vetch]) and chemical fertilization, tillage and no-tillage, and crop rotation (corn-wheat, corn-.hairy vetch). It was found that the application of organic matter such as animal manure compost and hairy vetch, increased the soil organic matter content, the soil microbial density and microbial biomass C content as compared with the chemical fertilizer treatment. It was also confirmed that the functional diversity of soil microbial community was increased. As a result of the comparison with the crop rotation and single cropping, the soil chemistry showed no significant difference between the treatments, but the corn-wheat and corn-hairy vetch rotation treatments tended to have higher microbial biomass C content and shannon's diversity index than the single cropping. Soil chemical properties of tillage and no-tillage treatments showed no significant difference between treatments. There was no statistically significant difference in substrate utilization of soil microbial community between tillage and no-tillage treatment. Correlation analysis between soil chemical properties and soil microbial activity revealed that soil organic matter content and exchangeable potassium content were positively correlated, with statistical significance, with substrate utilization, and substrate richness. To conclude, organic fertilization had positive effects on the short-term improvement of soil chemical properties and diversity of microbial communities.