• Title/Summary/Keyword: Substrate removal rate

Search Result 159, Processing Time 0.03 seconds

TREATMENT OF FOODWASTE AND POSPHORUS REMOVAL USING STRUVITE CRYSTALLIZATION IN HYBRID ANAEROBIC REACTOR WITH SAC MEDIA

  • Park, In-Chul;Kim, Dong-Su;Kim, Sung-Man;Lee, Jung-Jun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.129-132
    • /
    • 2001
  • The purpose of this research was to understand possibility of foodwaste treatment by hybrid anaerobic reactor(HAR). The Possibility of methane utility and applicability of hybrid reactor system using foodwaste as substrate was investigated. The maximum loading rate and optimized operational conditions were determined. Hybrid anaerobic reactor was filled with packing material 50% of its total volume between the tube and the outer surface. The packing material used was randomly packed open-pore synthesis activated ceramic(SAC) media as support media for microbial attachment, growth, and chemical stability protected bacteria from effect of organic acid accumulation. In this research, although foodwaste has high concentrations C $l^{[-10]}$ and S $O_{4}$$^{2-}$ concentration the possibility of foodwaste anaerobic treatment was when foodwaste is treated by anaerobic digestion, this study focused on the possibility using C $H_4$ gas made under the anaerobic treatment as an alternative energy source. Other objective of this research is to study struvite formation and crystal forms in anaerobic digester. HAR is used to investigate phosphate crystallization without the addition of chemicals.

  • PDF

Removal and Regrowth Inhibition of Microcystis aeruginosa using Artemisia asiatica Extracts (쑥 추출액을 이용한 Microcystis aeruginosa 제거 및 성장억제 연구)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.441-448
    • /
    • 2017
  • Microcystis aeruginosa (M. aeruginosa) is a cyanobacterium species that can form harmful algal blooms in freshwater bodies worldwide. The use of Artemisia asiatica extracts to control M. aeruginosa inhibition will be environmentally friendly and promising. Artemisia asiatica extracts removed successfully upto 88% of M. aeruginosa pH 8 at $25^{\circ}C$ of temperature. These results was indicated that the amount of 2.24 g/L Artemisia asiatica extracts was removed 1g dryweight/L of M. aeruginosa. The kinetic data showed substrate inhibition kinetics and maximum growth rate was obtained when the M. aeruginosa was grown in medium containing 2.5 g/L of initial concentration of Artemisia asiatica extracts. In the various growth control models, Luong model showed the highest correlation coefficient of 0.9916. Therefore, the Luong model was the most suitable control model for the growth control of M. aruginosa using Artemisia asiatica extracts. In conclusion, the growth control of M. aruginosa using Artemisia asiatica extracts can be applied in the field without controlling the temperature and pH of rivers and streams, and it is possible to control the growth of M. aruginosa efficiently in a short time. The natural extract, Artemisia asiatica extracts, can be a promising inhibition due to its high efficiency and low dose requirements.

The Effects of Light Intensity, Inoculum Size, and Cell Immobilisation on the Treatment of Sago Effluent with Rhodopseudomonas palustris Strain B1

  • Ibrahim, Shaliza;Vikineswary, S.;Al-Azad, Sujjat;Chong, L.L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.377-381
    • /
    • 2006
  • A study was carried out to determine a suitable light intensity and inoculum size for the growth of Rhodopseudomonas palustris strain B1. The pollution reduction of sago effluent using free and immobilised R. palustris cells was also evaluated. The growth rate in glutamatemalate medium was highest at 4 klux compared to 2.5 and 3 klux. The optimal inoculum size was 10% (v/v). Both the COD and BOD of the sago effluent were reduced by 67% after three days of treatment. The difference in biomass production or BOD and COD removal with higher inoculum sizes of 15 and 20% was minimal. This could be attributed to limited nutrient availability in the substrate. The use of immobilised cells of R. palustris reduced the pollution load 10% less compared to pollution reduction by free cells. Hence, there was no significant difference in using free or immobilised cells for the treatment of sago effluent.

An Active Site Arginine Residue in Tobacco Acetolactate Synthase

  • Kim, Sung-Ho;Park, En-Joung;Yoon, Sung-Sook;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1799-1804
    • /
    • 2003
  • Acetolatate synthase(ALS) catalyzes the first common step in the biosynthesis of valine, leucine, isoleucine in plants and microorganisms. ALS is the target of several classes of herbicides, including the sulfonylureas, the imidazolinones, and the triazolopyrimidines. To elucidate the roles of arginine residues in tobacco ALS, chemical modification and site-directed mutagenesis were performed. Recombinant tobacco ALS was expressed in E. coli and purified to homogeneity. The ALS was inactivated by arginine specific reagents, phenylglyoxal and 2,3-butanedione. The rate of inactivation was a function of the concentration of modifier. The inactivation by butanedione was enhanced by borate, and the inactivation was reversible on removal of excess butanedione and borate. The substrate pyruvate and competitive inhibitors fluoropyruvate and phenylpyruvate protected the enzyme against inactivation by both modifiers. The mutation of well-conserved Arg198 of the ALS by Gln abolished the enzymatic activity as well as the binding affinity for cofactor FAD. However, the mutation of R198K did not affect significantly the binding of FAD to the enzyme. Taken together, the results imply that Arg198 is essential for the catalytic activity of the ALS and involved in the binding of FAD, and that the positive charge of the Arg is crucial for the interaction with negatively charged FAD.

The Analysis of Chemical Vapor Deposition Characteristics using Focused Ion Beam (FIB-CVD의 가공 공정 특성 분석)

  • Kang E.G.;Choi H.Z.;Choi B.Y.;Hong W.P.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.593-597
    • /
    • 2005
  • FIB equipment can perform sputtering and chemical vapor deposition simultaneously. It is very advantageously used to fabricate a micro structure part having 3D shape because the minimum beam size of ${\phi}$ 10nm and smaller is available. Currently FIB is not being applied in the fabrication of this micro part because of some problems to redeposition and charging effect of the substrate causing reduction of accuracy with regards to shape and productivity. Furthermore, the prediction of the material removal rate information should be required but it has been insufficient for micro part fabrication. The paper have the targets that are FIB-CVD characteristic analysis and minimum line pattern resolution achievement fur 3D micro fabrication. We make conclusions with the analysis of the results of the experiment according to beam current, pattern size and scanning parameters. CVD of 8 pico ampere shows superior CVD yield but CVD of 1318 pico ampere shows the pattern sputtered. And dwell time is dominant parameter relating to CVD yield.

  • PDF

The Effect of Substrates and Nitrate on Biological Phosphorus Release (생물학적 인 방출시 유기물 및 질산염에 대한 영향)

  • Min, Kyung-Kook;Weon, Seung-Yeon;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, effects of substrates and nitrate on biological phosphorus release in EBPR(enhanced biological phosphorus removal) process were examined using batch test apparatus at anaerobic conditions. The sludge used in this experiments was taken from SBR(sequencing batch reactor) treating swine wastewater at aeration period. Phosphorus release rates obtained with substrates of FSW(fermented swine wastewater), acetate, propionate, domestic wastewater and methanol were 6.19, 5.99, 1.52, 1.2 and $1.03mgP/gVSS{\cdot}hr$, respectively. Those observed with acetate and FSW were 4~5 times greater than those with propionate, methanol and domestic wastewater. Therefore phosphorus release rates were significantly affected by type of substrate added at anaerobic condition. Phosphorus release was greatly affected by concentration of nitrate in anoxic condition. Comparing to acetate, propionate and FSW, phosphorus release was observed after almost completely depletion of nitrate concentration with methanol and domestic wastewater added as substrate. In the cases supplied with acetate, propionate and FSW, phosphorus release rates were less influenced by a nitrate concentration than those with methanol and domestic wastewater.

  • PDF

Removal/Recovery of VOCs Using a Rubbery Polymeric Membrane (Rubbery 고분가 막을 이용한 휘발성 유기화학물의 제거 및 회수)

  • Cha, Jun-Seok
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.173-181
    • /
    • 1996
  • Common volatile organic compounds(VOCs) such as toluene and methanol were removed successfully from N$_{2}$ using a novel silicone-coated hollow fiber membrane module. This novel membrane is a thin film composite(TFC) and was highly efficient in removing VOCs selectively from a N$_{2}$ stream. This membrane had some innate advantages over other silicone-based membrane in that the selective barrier was ultrathin(~1 $\mu$m) and the porosity of the polypropylene substrate was high which leads to a low permeation resistance. The substram was very strongly bonded to the coating layer by plasma polymerization and can withstand a very high pressure. A small hollow fiber module having a length of 25cm and 50 fibers could remove 96~99% of toluene as well as methanol vapors when the feed flow rate was up to 60cc/min. The percent removal of VOCs were even higher when the feed inlet concentration was higher. This process is especially suitable for treating streams having a low flow rate and high VOCs concentration. The permeances of VOCs through this membrane was in the range of $4~30 \times 10^{-9}gmol/sec \cdot cm^{2}\cdot cmHg$ for both toluene and methanol, and nitrogen permeance was between $3~9 \times 10^{-10}gmol/sec \cdot cm^{2} \cdot cmHg$. High separation factor between 10~55 for toluene/N$_{2}$ and 15~125 for methanol/N$_{2}$ were obtained depending on the feed flow rate ranges and feed VOCs concentration levels.

  • PDF

Reduction of Perchlorate and Nitrate by Citrobacter Amalonaticus Strain JB101 : Kinetics and the Applicability of MBR (Citrobacter Amalonaticus Strain JB101에 의한 과염소산염과 질산염의 환원 : Kinetics 및 MBR을 이용한 처리 가능성)

  • Hong, Jae-Wha;Jang, Myung-Su;Lee, Il-Su;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1298-1304
    • /
    • 2005
  • This study was performed to evaluate the characteristics of the competition between two electron acceptors, perchlorate and nitrate, with Citrobacter Amalonaticus strain JB101. In addition, the applicability of membrane bioreactor(MBR) for perchlorate removal was evaluated. The maximum growth rate of strain JB101 on perchlorate and nitrate are 0.27 and 0.58 $hr^{-1}$, and maximum substrate utilization rates were 35.1 mg $ClO_4^-/g$ protein-day and 45.6 mg $NO_3^-/g$ protein-day, respectively. Nitrate was a competitive inhibitor for perchlorate, and strain JB101 prefer nitrate to perchlorate as electron acceptor. Complete removal of perchlorate could be achieved up to the surface leading rate of 4.6 g $ClO_4^-/m^2-day$ with the MBR fed with 20 mg $ClO_4^-/L$(HCMBR). When 5 mg/L of nitrate was added to the same influent, perchlorate removal efficiency decreased to 96.5%, while nitrate was completely removed. For the MBR fed with 0.7 mg/L of perchlorate (LCMBR), the maximum perchlorate removal efficiency was 100% up to the loading rate of 0.23 g $ClO_4^-/m^2-day$. Membrane fouling was found to be a problem at high leading rate for both MBRs. The acetate consumption ratio per perchlorate was $13.7{\sim}51.7\;e^-eq./e^-eq.$ in LCMBR, while the value was $2.5{\sim}3.6\;e^-eq./e^-eq.$ in HCMBR. This difference could be related to the acetate consumption with oxygen as electron acceptor. Therefore, the amount of acetate addition must be determined considering the concentrations of other electron acceptors in the influent.

Surfactant Selection for the Enhanced Biological Degradation of Toluene (Toluene의 생물학적 분해능 향상을 위한 계면활성제의 선정)

  • Kim Yong-Sik;Son Young-Gyu;Khim Jee-Hyeong;Song Ji-Hyeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.26-32
    • /
    • 2005
  • Surfactants can be used to enhance the mass transfer rate of hydrophobic compounds into the biologically active liquid phase, resulting in an increase in biodegradation rate of toluene. In this study, the mass transfer rate and the biocompatibility of toluene in the presence of various surfactants were evaluated. Four anionic and non ionic surfactants were tested: sodium dodecyl sulfate (SOS), TritonX-100, Tween 80, and BYK-345 (silicone surfactant). Experimental results showed that BYK-345 at the critical micelle concentration (CMC) enhanced the solubility of toluene. However, there was no increase in the solubility of toluene by SOS and TritonX-100 at their CMCs. With the addition of each surfactant into deionized water the mass transfer rate became faster than that of the case with no surfactant. A bottle study using toluene-degrading microorganisms showed that SOS seriously reduced toluene removal presumably due to the toxicity of the anionic surfactant and/or the substrate competition between the surfactant and toluene. In addition, the degradation rate of toluene was decreased in the presence of BYK-345, indicating that BYK-345 adversely affects the activity of microorganisms. However, TritonX-100 and Tween 80 did not decrease the degradation rate of toluene significantly. Rather, at the low concentration of TritonX-100 toluene degradation rate was even increased. Overall the experimental results suggest that TritonX-100 be the appropriate surfactant for enhanced biological degradation of toluene.

Parametric study of diamond/Ti thin film deposition in microwave plasma CVD (공정변수에 따른 microwave plasma CVD 다이아몬드/Ti 박막 증착 양상 조사)

  • Cho Hyun;Kim Jin Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • Effects of CH₄/H₂ flow rate ratio, chuck bias and microwave power on the structural properties and particle densities of diamond thin films deposited on Ti substrates in microwave plasma CVD were examined. High quality diamond thin films were deposited on Ti substrates in 2∼3 CH₄ Vol.% conditions due to the preferential formation of sp³-bonus ana selective removal of sp²-bonus in the CH₄/H₂ mixtures, and the mechanism for the formation of diamond particles on Ti was analysed. Diamond particle density increased with increasing negative chuck bias to Ti substrate due to bias-enhanced nucleation of diamond and the threshold voltage was found at ∼-50 V. With increasing microwave power the evolution from micro-crystalline graphite layer to diamond layer was observed.