• Title/Summary/Keyword: Substitution Ratio

Search Result 494, Processing Time 0.024 seconds

Physical Properties of Concrete mixed with Fine Sand and Copper Slag (동슬래그 혼합 잔골재를 이용한 콘크리트의 물리적 특성)

  • 이진우;김경민;배연기;이재삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.15-18
    • /
    • 2003
  • Development of the construction industry generally exhausts natural aggregate. Hence it is problem to the lack of supply and quality deterioration, so the resource saving and protection of environment is made an effort through recycling by-product. This study presents that fundamental properties of concrete which used cooper slag as alternate sand of low fineness modulus and plan of cooper slag as concrete aggregate. Testing factors are concrete's slump, air contents, unit weight and compressive strength. The results of this study are as follows; (1) Concrete slump is generally satisfied with the condition but is inferior to the others in substitution rates 30%. Also air contents are 3.1-4.1% and go up according to increase substitution rate. (2) Unit weight increase in 1.1% as the mixing ratio of cooper slag argument 10%. (3) compressive strength of cooper slag concrete is similar to plain and especially higher 11-15% in W/C 45%, 50%. So it seems that aggregate mixed cooper slag is suitable to low water-cement ratio mixture.

  • PDF

A Study on Vehicle Application and Performance of LNG-Diesel Dual Fuel Engine (LNG-디젤 혼소엔진의 성능 및 실차 적용성 연구)

  • Lee, Seok-Hwan;Kim, Hong-Suk;Cho, Gyu-Baek;Hong, Sun-Cheol;Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2011
  • The electronically controlled diesel engine was converted to dual fuel engine system. Test engine was set up for investigating the power output, thermal efficiency and emissions. ND 13-mode tests were employed for the engine test cycle. The emission result of dual fuel mode meets Euro-4 (K2006) regulation and the engine performance of dual fuel engine was comparable to the performance of diesel engine. To estimate economical efficiency, test vehicles have been operated on a certain driving route repeatedly. Fuel economy, maximum driving distance per refueling and driveability were examined on the road including free ways. Developed vehicle can be operated over 500 km with dual fuel mode and shows 80% of diesel substitution ratio. Driveability of dual fuel mode is similar with that of diesel mode.

Long-term Deflection of R/C Beam with Variable Substitution Ratio of Recycled Aggregate (순환골재 치환율에 따른 R/C보의 장기처짐에 관한 연구)

  • Yoon, Seung-Joe;Seo, Soo-Yeon;Lee, Woo- Jin;Kang, Seong-Duk;Kim, Dae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.37-40
    • /
    • 2006
  • In this paper, long term deflection of RC beam with variable substitution ratio of recycled aggregate is investigated. 6 RC beam specimens are designed using concrete made of coarse aggregate of 25mm size, mix strength of 21MPa, slump of 12cm and air content of $5.0{\pm}1.5%$. A few concrete blocks are made and used for long term loading. The loading and deflection instrumentation are conducted following the process codified in ACI 318-05 code. Test result shows that the deflection of specimens depends on the compressive strength of concrete. And it is concluded that the deflection of RC beam can be predicted like normal beam using ACI formula if certain level of compressive strength is acquired even recycled aggregate is used in making the beam.

  • PDF

A Basic Study on Reduction of Autogenous Shrinkage of High Strength Mortar by Plant Edible Oil (식물성 유지류에 의한 고강도 모르터의 자기수축 저감에 관한 기초적 연구)

  • Song, Ri-Fan;Baek, Dae-Hyun;Choi, Young-Wha;Baek, Byung-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.69-72
    • /
    • 2009
  • This study reviewed the reduction effect of autogenous shrinkage of high strength mortar by plant edible oils based on existing studies, in an effort to find the method of reducing autogenous shrinkage of high strength concrete. To summarize the results, first as characteristics of fresh mortar, substitution of plant edible oil showed slight reduction in liquidity. Compressive strength was reduce at age of 28 days compared to plain mix regardless of type and substitution ratio. Ratio of change in the length of autogenous shrinkage of high strength mortar by plant oils was found to reduce compared to the plain, and the reduction effect was most satisfactorγ in bean oil.

  • PDF

Durability of Recycled Aggregate Concrete Incorporating Fly Ash (플라이애쉬를 혼합한 재생골재 콘크리트의 내구성)

  • 신재인;류택은;양승규;구봉근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • This study presented the experimental results on the durability properties of recycled aggregate concrete incorporating fly ash. The main experimental variables were the substitution ratio of recycled aggregate and fly ash, where the substitution ratios of recycled aggregate were 0, 30, and 50%, and those of fly ash were 0, 10, 20, and 30%. The tests for evaluating compressive strength, freezing-thawing resistance, and drying shrinkage were conducted for each specimen. As a result, the compressive strength and the durability of the recycled aggregate concrete were compared from those of ordinary concrete. The followings were conclusion; The compressive strengths of recycled aggregate concrete were less than those of ordinary concrete by 5-10%. However, the durability factor of recycled aggregate concrete remained above 90% at the substitution ratio of 30%. The quality of recycled aggregate concrete were improved by substitution at the range of less that 20% of fly ash and 30% of recycled aggregate.

Total Utilization of Woody Biomass by Steam Explosion(II) -The Preparation of Carboxymethylcellulose from Exploded Wood- (폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) biomass의 종합적(綜合的) 이용(利用)(II) -폭쇄재(爆碎材)로부터 Carboxymethyl cellulose의 제조(製造)-)

  • Han, Sang-Yeol;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 1994
  • Steam explosion process is one of the most efficient, pretreatment method for the utilization of lignocellulosic biomass. The carbxymethyl-cellulose(CMC) was prepared with steam exploded wood(EXW), pine(Pinus densiflora) and oak(Quercus mongolica), by standard method using isopropyl alcohol and monochloroacetic acid. The range of water solubility of carboxymethylated pine exploded wood was 45.2~66.8 % and those of oak was 60.7~84.7 %. The degree of substitution(D.S) of carboxymethylated pine exploded wood was 0.11~0.33 and oak exploded wood was 0.48~0.76. The color of carboxymethylated pine and oak exploded wood was brown-black. When carboxymethylated EXW was purified by sulfuric acid, the yield of carboxymethylated wood was lower than non-treated one. However, the color was still brown-black although after delignification. In carboxymethylated EXM prepared after delignification, the water solubility and degree of substitution(D.S) of pine were 81.4~95.9 % and 0.71~0.79, and those of oak were 76.2~89.5 % and 0.79~1.05. The values were higher than non-treated. The degree of substitution of purified carboxymethylated wood prepared with delignified EXM, pine and oak were 0.50~0.71 and 0.70~0.88. The color of carboxymethylated wood was white. In carboxymethylated wood preparde after delignification of EXM, swelling ratio and water retention value of pine were 95.9~96.5 and 580.0~751.2, those of oak were 76.2~89.5 and 124.3~307.6.

  • PDF

An Experimental Study on the Quality of Mortar Strength using the Quenched Blast-Furnace Slag (수재사 모르터의 강도특성에 관한 연구)

  • 임남기;이영도;양범석;김영회;최문식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.207-214
    • /
    • 1997
  • Strength experimental on mortar which use Quenched Blast-Furnace Slag as aggregate was carried our for a fundamental study of application possibility of Quenched Blast-Furnace Slag as aggregate. It gives the following results. The strength of mortar use Quenched Blast-Furnace Slag is decrease as substitution rate is higher. As W/C rate increase, the strength decrease, but the strength decrease of fine aggregate rate 1:3 is lower than 1:2. The relation with fine aggregate is that the amount of fine aggregate is inversely proportional to strength. Th relation with age is proportional to strength and strength rate of going is lower than general mortar in 28 age the change of strength proportionately with W/C rate is that as W/C rate increases, th strength is drop ; it shows that it has same tendency as general mortar sand or crushed sand, but while W/C rate increase the strength is as high as general mortar. The reason can be assumed that water content per unit needed to Quenched Blast-Furance Slag is more than in case of sand. In addition, the relation with substitution rate is that the strength is the strongest at substitution rate 25% and 50% ; that is , sometimes it is higher than mortar which use sand 100%. In addition, long age strength of mortar which use Quenched Blast-Furnace Slag as aggregate is about to be studied in the last.

  • PDF

Chloride Diffusion Coefficient at Reference Time for High Performance Concrete for Bridge Pylons in Marine Environment (해상교량 주탑용 고성능 콘크리트의 기준재령 염소이온 확산계수)

  • Yoon, Chul-Soo;Kim, Ki-Hyun;Yang, Woo-Yong;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.435-444
    • /
    • 2012
  • High performance concrete mixes are selected and corresponding test specimens are made for the study of chloride diffusion coefficient at reference time. The concrete mixes were same designs as those used in construction of bridges located in a marine environment. Mix design variables included binder type, water-to-binder ratio, mineral admixtures to total binder weight substitution ratio, fine aggregate source, chemical water reducer admixture type for high strength and high flowability, and target slump or slump flow. The test results showed that the diffusion coefficients at reference time varied significantly according to the type of mineral admixtures and their substitution ratios. A model for diffusion coefficient at reference time considering the type of mineral admixture and the substitution ratio was developed. Diffusion coefficients from the developed model were compared with those from literature review, a previous model, and additional test results. All of the comparisons verified that the developed model can reasonably predict diffusion coefficients and the application of the model to the durability design against chloride penetration is appropriate.

An Experimental Study on the Engineering Characteristics of Perforated Reinforced Concrete Beams containing Shells (패각을 사용한 철근콘크리트 유공보의 공학적 특성에 관한 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • This is an experimental study on the engineering characteristics of perforated reinforced concrete beams with shells. In the material matter of this study, the water cement ratio put 60%, the ratio of substitution of oyster shells to fine aggregate 30%. And in the structural matter, the form of opening put circle and square, the size of opening as the radius and the length of it changed from one to three times of the beam depth with a change presence and absence of reinforced steel around opening. All thirteen reinforced concrete beam tests composed one standard beam and twelve six beams with the circle and square opening were tested in shear strength under two points loading and compared and analyzed the characteristics of test beams under the same conditions one another. The results of the study showed as followed. 1) The initial crack load value of the opening test beams is similar the standard beam but the maximum load value decreased with increase in proportion of the opening size, in the square opening than the circle opening and in the absence than the presence of reinforced steel. 2) As the difference between the circle opening and the square opening beams is represented 2.17~9.8% in the maximum load value and the load capacity of the square opening suddenly decrease than it of the circle opening, it is judged because of the shortage of concrete section, the concentration of the stress in the corner of the square opening and material influence of shell substitution. 3) The failure figure such as the pattern of the crack and so on is represented brittle failure as the opening size is the bigger and the ratio of substitution is higher because of the lack material properties.

Fundamental Properties of Mortar and Concrete Using High Calcium Fly Ash (고칼슘 플라이애시를 활용한 모르타르 및 콘크리트의 기초적 물성)

  • Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.284-291
    • /
    • 2016
  • To evaluate the properties of inorganic composites using a great quantity of high-calcium fly ash generated in combined heat and power plants, high-calcium fly ash and F-class fly ash commonly used as concrete admixtures were substituted with binding materials to examine changes of fluidity and compressive strength depending on the substitution ratio for each curing temperature. According to the experimental result, CFA-mixed mortar showed a tendency to reduce its flow unlike FFA-mixed mortar as the substitution ratio was increased, but its flow loss showed smaller than FFA as time passed. As a result of examining compressive strength depending on mixing FA, FFA-mixed mortar had an optimum range within 50% when curing at ambient temperature, but it was found that the compressive strength is reduced when mixing CFA. When curing at high temperature, FFA did not relatively have a great effect on the substitution ratio, but CFA could expect a strength enhancement effect compared with 100% of OPC when using within 25% of binding materials.