Density'(밀도)가 비교적 높은 Chor-Rivest 암호체계는 기존의 LLL과 같은 유형의 공격법이 아니라 비밀키를 일부 찾아내므로 써 공격이 가능하고 '98 Crypto에 처음 발표되 고 '99 Crypto에 그의 공격법과 안전성이 논의된 hidden subset sum problem은 기존의 knapsack 유형의 암호체계와 마찬가지로 밀도가 높을 때 안전하고 밀도가 낮으면 공격이 가능하다 따라서 두 암호체계의 접목을 통하여 안전한 암호체계가 가능한지를 살펴보는 것 도 의미가 있을 것이다, 결론적으로 이야기하면 두암호체계의 접목은 여러 가지 문제점을 포함하고 있기 때문에 어려우리라 생각된다. 제1장에서의 hidden subset sum problem을 살 펴보고 제2장에서는 Chor-Rivest 암호체계를 분석해보고 제 3장에서 Chor-Rivest 암호체계 의 변경 가능한 요소들을 살펴보고 제4장에서 Chor-Rivest 암호체계에 hidden subset sum problem의 활용이 가능한지를 살펴보도록한다. knapsack 유형의 암호체계들중 비교적 최근 까지 안전하다고 하는 암호체계들을 살펴봄으로써 이런 유형들의 개발여부를 생각해 볼수 있는 기회가 되리라 기대된다.
부분집합 합 문제는 유한개의 정수로 이루어진 집합이 있을 때 이 집합의 부분집합 중에서 그 집합의 원소들의 합이 특정 값이 되는 경우가 있는지를 알아내는 문제로, 잘 알려진 다항식 시간 내에 풀기 어려운 NP-완비 문제이다. 유전 알고리즘은 선택과 교차, 돌연변이 등의 연산을 통해 주어진 문제의 최적해를 구하는 알고리즘이다. 동적 계획법은 주어진 문제를 풀기 위해서 문제를 하나 또는 여러 개의 하위 문제로 나누어 풀이하는 방법이다. 본 논문에서는 부분집합 합 문제를 풀이하는 유전 알고리즘을 설계 및 구현하고, 답을 찾는 데까지 걸리는 시간 성능을 동적 계획법의 경우와 실험적으로 비교하였다. 양의 정수인 원소 63 개를 가진 집합에서 '쉬움'과 '어려움'의 난이도를 고려하여 총 17 개의 문제를 선정하고, 이 문제들을 풀이하는 두 알고리즘의 성능을 비교하는 실험을 진행하였다. 17 개의 문제 중 13 개의 문제에서 본 논문에서 제시한 유전 알고리즘은 동적 계획법과 비교하여 약 84%가 우수한 시간 성능을 보였다.
Let A = {a1 < a2 < ⋯} be a sequence of integers and let P(A) = {Σεiai : ai ∈ A, εi = 0 or 1, Σεi < ∞}. Burr posed the following question: Determine conditions on integers sequence B that imply either the existence or the non-existence of A for which P(A) is the set of all non-negative integers not in B. In this paper, we focus on some problems of subset sum related to Burr's question.
본 논문은 부분집합 합 문제의 해를 수행 복잡도 O(nlogn)으로 얻는 알고리즘을 제안하였다. SSP는 집합 S의 원소가 초증가수열과 랜덤수열로 구성된 경우로 구분된다. 초증가수열 SSP의 해를 구하는 알고리즘은 수행 복잡도 O(nlogn)의 가산 알고리즘 (Additive Algorithm)이 제안되었다. 그러나 랜덤수열 SSP의 해를 구하는 알고리즘은 2n-1의 가능한 모든 경우수를 확인하는 Brute-Force 방법으로 수행 복잡도는 O(n2n)만이 알려져 있다. 결국, SSP는 NP-완전 (NP-Complete) 문제로 알려져 있다. 본 논문은 초증가수열과 랜덤수열 SSP에 대해 수행 복잡도 O(nlogn)으로 해를 구하는 감산 알고리즘 을 제안하였다. 기존 개념은 목표 값 t보다 작은 값으로 구성된 부분집합 S에 대해 부분집합의 합에서 목표값을 뺀 값을 잉여량 (Residual, r)으로 하여 잉여량 보다 작은 값들 중 최대 값을 S에서 제거하는 방법을 적용하였다. 제안된 알고리즘을 다양한 초증가수열과 랜덤수열 SSP에 적용한 결과 S의 원소 개수보다 적은 수행 횟수로 해를 빠르게 얻는데 성공하였다. 결국, 제안된 알고리즘은 SSP의 해를 얻는 일반적인 알고리즘으로 적용할 수 있을 것이다.
최근 즐거움과 학습 효과를 동시에 제공하는 교육용 기능성 게임이 많은 주목을 받고 있다. 그러나 대부분의 교육용 게임들을 유아나 아동들을 대상으로 하고 있고, 고등 교육에서 이러한 게임을 활용하는 것은 여전히 어려운 실정이다. 반면, 본 논문은 대학생들에게 수리계획법을 가르치는데 활용할 수 있는 교육용 게임을 개발하고자 한다. 잘 알려져 있듯이, 대부분의 퍼즐 게임들은 연관된 최적화 문제로의 변형이 가능하며, 본 논문에서는 부분집합총합문제 기반 교육용 퍼즐 게임을 제안한다. 이 게임은 사용자가 퍼즐을 플레이하거나 이를 풀기 위한 수리계획모형을 작성할 수 있게 도와준다. 나아가, 사용자들은 모형 작성을 위한 적절한 안내를 제공받으며, 작성된 모형은 자동 생성된 데이터들에 의해 평가된다. 본 논문의 교육용 게임은 산업공학이나 경영과학 분야 대학생들에게 기본적인 수리계획모형을 가르치는데 특히 도움이 될 것으로 기대된다.
In this paper, we study the solvability of the nonlinear Dirichlet problem with sum of the operators of independent non standard growths $$-div\({\mid}{\nabla}u{\mid}^{p_1(x)-2}{\nabla}u\)-\sum\limits^n_{i=1}D_i\({\mid}u{\mid}^{p_0(x)-2}D_iu\)+c(x,u)=h(x),\;{\in}{\Omega}$$ in a bounded domain ${\Omega}{\subset}{\mathbb{R}}^n$. Here, one of the operators in the sum is monotone and the other is weakly compact. We obtain sufficient conditions and show the existence of weak solutions of the considered problem by using monotonicity and compactness methods together.
Let ${\cal{L}}$ be a commutative subspace lattice on a Hilbert space ${\cal{H}}$ and X and Y be operators on ${\cal{H}}$. Let $${\cal{M}}_X=\{{\sum}{\limits_{i=1}^n}E_{i}Xf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}$$ and $${\cal{M}}_Y=\{{\sum}{\limits_{i=1}^n}E_{i}Yf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}.$$ Then the following are equivalent. (i) There is an operator A in $Alg{\cal{L}}$ such that AX = Y, Ag = 0 for all g in ${\overline{{\cal{M}}_X}}^{\bot},A^*A=AA^*$ and every E in ${\cal{L}}$ reduces A. (ii) ${\sup}\;\{K(E, f)\;:\;n\;{\in}\;{\mathbb{N}},f_i\;{\in}\;{\cal{H}}\;and\;E_i\;{\in}\;{\cal{L}}\}\;<\;\infty,\;{\overline{{\cal{M}}_Y}}\;{\subset}\;{\overline{{\cal{M}}_X}}$and there is an operator T acting on ${\cal{H}}$ such that ${\langle}EX\;f,Tg{\rangle}={\langle}EY\;f,Xg{\rangle}$ and ${\langle}ET\;f,Tg{\rangle}={\langle}EY\;f,Yg{\rangle}$ for all f, g in ${\cal{H}}$ and E in ${\cal{L}}$, where $K(E,\;f)\;=\;{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Y\;f_{i}{\parallel}/{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Xf_{i}{\parallel}$.
In this paper, we propose a practical cut generation method based on the Chvatal-Gomory procedure for the (0, 1)-Knapsack problem with a variable capacity. For a given set N of n items each of which has a positive integral weight and a facility of positive integral capacity, a feasible solution of the problem is defined as a subset S of N along with the number of facilities that can satisfy the sum of weights of all the items in S. We first derive a class of valid inequalities for the problem using Chvatal-Gomory procedure, then analyze the associated separation problem. Based on the results, we develop an affective cut generation method. We then analyze the theoretical strength of the inequalities which can be generated by the proposed cut generation method. Preliminary computational results are also presented which show the effectiveness of the proposed cut generation method.
이 논문에서는 고정된 개수를 가진 bin들을 이용하여 실행 복잡도가 $p(n){\cdot}2^{O(\sqrt{n})}$인 알고리즘을 제시한다, 여기서 x는 (5)n개의 객체들에 대한 리스트의 길이에 대한 총 비트 수를 나타낸다. 이러한 방법은 수치적 크기나 비중의 합의 리스트를 이용하는 여러 가지 최적화 알고리즘이나 결정 문제등에 적용할 수 있다. 이 논문에서 제시한 알고리즘은 의사-다항식(pseudo-polynomial) 시간을 갖는 NP-Complete의 많은 문제들을 결정적인 서브-지수 시간에 해결할 수 있은 가능성을 제시한다. 여기서 제시한 알고리즘을 이용하여 생명공학의 유전자 분석에 적용하려고 한다.
Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.