SOME REMARKS ON PROBLEMS OF SUBSET SUM

Min Tang and Hongwei Xu

Abstract

Let $A=\left\{a_{1}<a_{2}<\cdots\right\}$ be a sequence of integers and let $P(A)=\left\{\sum \varepsilon_{i} a_{i}: a_{i} \in A, \varepsilon_{i}=0\right.$ or $\left.1, \sum \varepsilon_{i}<\infty\right\}$. Burr posed the following question: Determine conditions on integers sequence B that imply either the existence or the non-existence of A for which $P(A)$ is the set of all non-negative integers not in B. In this paper, we focus on some problems of subset sum related to Burr's question.

1. Introduction

Let \mathbb{N} be the set of all nonnegative integers. For a sequence of integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$, let

$$
P(A)=\left\{\sum \varepsilon_{i} a_{i}: a_{i} \in A, \varepsilon_{i}=0 \text { or } 1, \sum \varepsilon_{i}<\infty\right\}
$$

Here $0 \in P(A)$.
In 1970, Burr [1] asked the following question: Determine conditions on integers sequence B that imply either the existence or the non-existence of A for which $P(A)$ is the set of all non-negative integers not in B. He showed the following result (unpublished):

Theorem A ([1]). Let $B=\left\{4 \leq b_{1}<b_{2}<\cdots\right\}$ be a sequence of integers for which $b_{n+1} \geq b_{n}^{2}$ for $n=1,2, \ldots$. Then there exists $A=\left\{a_{1}<a_{2}<\cdots\right\}$ for which $P(A)=\mathbb{N} \backslash B$.

Burr [1] ever mentioned that if B grows "sufficiently rapidly", then there exists a sequence A such that $P(A)=\mathbb{N} \backslash B$. More previous work has helped to clarify what "sufficiently rapidly" means.

In 1996, Hegyvári [6] improved Burr's result by relaxing the restriction " $b_{n+1} \geq b_{n}^{2}(n \geq 1)$ " to " $b_{n+1} \geq 5 b_{n}(n \geq 1)$ ".

[^0]Theorem B ([6], Theorem 1). Let $B=\left\{7 \leq b_{1}<b_{2}<\cdots\right\}$ be a sequence of integers. Suppose that for every $n, b_{n+1} \geq 5 b_{n}$. Then there exists a sequence of integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ for which $P(A)=\mathbb{N} \backslash B$.

In 2012, Chen and Fang [2] precisely extended Hegyvári's result by elementary but not easy argument.

Theorem C ([2], Theorem 1). Let $B=\left\{b_{1}<b_{2}<\cdots\right\}$ be a sequence of integers with $b_{1} \in\{4,7,8\} \cup\{b: b \geq 11, b \in \mathbb{N}\}$ and $b_{n+1} \geq 3 b_{n}+5$ for all $n \geq 1$. Then there exists a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ for which $P(A)=\mathbb{N} \backslash B$.

Theorem D ([2], Theorem 2). Let $B=\left\{b_{1}<b_{2}<\cdots\right\}$ be a sequence of positive integers with $b_{1} \in\{3,5,6,9,10\}$ or $b_{2}=3 b_{1}+4$ or $b_{1}=1, b_{2}=9$ or $b_{1}=2, b_{2}=15$. Then there is no a sequence of positive integers $A=\left\{a_{1}<\right.$ $\left.a_{2}<\cdots\right\}$ for which $P(A)=\mathbb{N} \backslash B$.

In 2013, Chen and Wu [3] further relaxed the restriction " $b_{n+1} \geq 3 b_{n}+5$ " of Theorem D.

Theorem E ([3], Theorem 1). If $B=\left\{b_{1}<b_{2}<\cdots\right\}$ is a sequence of integers with $b_{1} \in\{4,7,8\} \cup\{b: b \geq 11, b \in \mathbb{N}\}, b_{2} \geq 3 b_{1}+5, b_{3} \geq 3 b_{2}+3$ and $b_{n+1}>3 b_{n}-b_{n-2}$ for all $n \geq 3$, then there exists a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ such that $P(A)=\mathbb{N} \backslash B$ and

$$
P\left(A_{s}\right)=\left[0,2 b_{s}\right] \backslash\left\{b_{1}, \ldots, b_{s}, 2 b_{s}-b_{s-1}, \ldots, 2 b_{s}-b_{1}\right\},
$$

where $A_{s}=A \cap\left[0, b_{s}-b_{s-1}\right]$ for all $s \geq 2$.
Theorem F ([3], Theorem 2). Let $B=\left\{b_{1}<b_{2}<\cdots\right\}$ be a sequence of integers and $d_{1}=10, d_{2}=3 b_{1}+4, d_{3}=3 b_{2}+2$ and $d_{n+1}=3 b_{n}-b_{n-2}(n \geq 3)$. If $b_{m}=d_{m}$ for some $m \geq 1$ and $b_{n}>d_{n}$ for all $n \neq m$, then there is no a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ such that

$$
\begin{equation*}
P\left(A_{s}\right)=\left[0,2 b_{s}\right] \backslash\left\{b_{1}, \ldots, b_{s}, 2 b_{s}-b_{s-1}, \ldots, 2 b_{s}-b_{1}\right\}, \tag{1.1}
\end{equation*}
$$

where $A_{s}=A \cap\left[0, b_{s}-b_{s-1}\right]$ for all $s \geq 2$.
Moreover, Chen and Wu [3] posed the following problem:
Problem 1 ([3], Problem 1). Let $B=\left\{b_{1}<b_{2}<\cdots\right\}$ be a sequence of positive integers. Let $d_{1}=10, d_{2}=3 b_{1}+4, d_{3}=3 b_{2}+2$ and $d_{n+1}=3 b_{n}-b_{n-2}(n \geq 3)$. If $b_{m}=d_{m}$ for some $m \geq 3$ and $b_{n}>d_{n}$ for all $n \neq m$. Is it true that there is no a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ with $P(A)=\mathbb{N} \backslash B$?

With the further research of Burr's question, many related problems arise. For the related problems, see [4,5,7-9].

In this paper, we give a further contribution to this problem:
Theorem 1.1. Let $B=\left\{b_{1}<b_{2}<\cdots\right\}$ be a sequence of integers with $b_{1} \in$ $\{4,7,8\} \cup\{b: b \geq 11, b \in \mathbb{N}\}$, if $3 b_{1}+5 \leq b_{2} \leq 4 b_{1}-2, b_{3}=3 b_{2}+2$ and
$b_{n+1}=3 b_{n}+4 b_{n-1}$ for all $n \geq 3$, then there exists a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ such that, for all $k \geq 4$,

$$
P\left(A_{k}\right)=\left[0, b_{k}+b_{k-1}\right] \backslash\left\{b_{1}, \ldots, b_{k}, b_{k}+b_{k-1}-b_{i}: i=1, \ldots, k-2\right\},
$$

where $A_{k}=A \cap\left[0, b_{k-1}+2 b_{k-2}-b_{k-3}\right]$.
Corollary 1.2. Let B be as defined above. Then there exists a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ such that $P(A)=\mathbb{N} \backslash B$.
Remark 1.3. By Theorem F, choose $m=3$, we know that if $B=\left\{11 \leq b_{1}<\right.$ $\left.b_{2}<\cdots\right\}$ is a sequence of integers with

$$
\begin{equation*}
b_{2} \geq 3 b_{1}+5, b_{3}=3 b_{2}+2, b_{n+1} \geq 3 b_{n}-b_{n-2}(n \geq 3) \tag{1.2}
\end{equation*}
$$

then there is no a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ such that (1.1). Our results show that given positive integers sequences B satisfying (1.2), although there is no a sequence of positive integers A satisfies "local" property (1.1), the sequence A satisfies other new "local" property, so that the sequence A still satisfies "global" property: $P(A)=\mathbb{N} \backslash B$. This result also shows that the answer to Problem 1 is negative for $m=3$.

Moreover, we obtain a supplement result to Theorem D.
Theorem 1.4. Let $B=\left\{3 \leq b_{1}<b_{2}<\cdots\right\}$ be a sequence of integers. If $b_{2} \in\left[b_{1}+2,2 b_{1}\right] \cup\left\{3 b_{1}+2,3 b_{1}+3\right\}$, then there is no a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ such that $P(A)=\mathbb{N} \backslash B$.

2. Lemmas

Lemma 2.1 ([8], Lemma 2.2). Let $b_{1} \in\{4,7,8\} \cup[11, \infty)$ be an integer. Then there exists a sequence of positive integers A_{1} with $A_{1} \subset\left[0, b_{1}-1\right]$ such that $P\left(A_{1}\right)=\left[0, b_{1}-1\right]$.
Lemma 2.2 ([8], Lemma 2.3). Let $A=\left\{a_{1}<a_{2}<\cdots\right\}$ and $B=\left\{b_{1}<b_{2}<\right.$ $\cdots\}$ be two sequences of positive integers. For any integer $t \geq 3$, let

$$
\begin{aligned}
& P\left(\left\{a_{1}, \ldots, a_{k+t-1}\right\}\right) \\
= & {\left[0, a_{k+2}+\cdots+a_{k+t-1}+2 b_{1}\right] \backslash\left\{b_{1}, a_{k+2}+\cdots+a_{k+t-1}+b_{1}\right\} . }
\end{aligned}
$$

(i) If $a_{k+2}+\cdots+a_{k+t-1}+b_{1} \geq a_{k+t}$ and $a_{k+2}+\cdots+a_{k+t-1} \neq a_{k+t}$, then $P\left(\left\{a_{1}, \ldots, a_{k+t}\right\}\right)=\left[0, a_{k+2}+\cdots+a_{k+t}+2 b_{1}\right] \backslash\left\{b_{1}, a_{k+2}+\cdots+a_{k+t}+b_{1}\right\}$.
(ii) If $a_{k+2}+\cdots+a_{k+t-1}+b_{1}<a_{k+t}$, then $b_{3}>b_{2}+b_{1}$.
(iii) If $a_{k+2}+\cdots+a_{k+t-1}=a_{k+t}$ and $a_{k+t}+b_{1}<a_{k+t+1}$, then $b_{3}>b_{2}+b_{1}$.
(iv) If $a_{k+2}+\cdots+a_{k+t-1}=a_{k+t}$ and $a_{k+t}+b_{1} \geq a_{k+t+1}$, then
$P\left(\left\{a_{1}, \ldots, a_{k+t+1}\right\}\right)=\left[0, a_{k+2}+\cdots+a_{k+t+1}+2 b_{1}\right] \backslash\left\{b_{1}, a_{k+2}+\cdots+a_{k+t+1}+b_{1}\right\}$.
The following lemma is contained in the proof of [8, Theorem 1.3]. For the sake of readability, we give a self-contained proof.

Lemma 2.3. Let b_{1}, b_{2} be two positive integers satisfying $b_{1} \in\{4,7,8\} \cup\{b$: $b \geq 11, b \in \mathbb{N}\}$. If $b_{2} \geq 3 b_{1}+5$, then there exists a finite sequence of positive integers $A=\left\{a_{1}<\cdots<a_{k}<a_{k+1}<\cdots<a_{k+s}<b_{1}+b_{2}\right\}$ such that

$$
P\left(\left\{a_{1}, \ldots, a_{k+s}\right\}\right)=\left[0, b_{1}+b_{2}\right] \backslash\left\{b_{1}, b_{2}\right\},
$$

where k, s are the indexes such that $a_{k}<b_{1}<a_{k+1}$ and

$$
s b_{1}+\frac{s(s+1)}{2} \leq b_{2}+1 \leq(s+1) b_{1}+\frac{s(s+3)}{2}
$$

Proof. By Lemma 2.1, there exists $A_{1}=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\} \subset\left[0, b_{1}-1\right]$ such that

$$
\begin{equation*}
P\left(A_{1}\right)=\left[0, b_{1}-1\right], \tag{2.1}
\end{equation*}
$$

where k is the indexes such that $a_{k}<b_{1}<a_{k+1}$. For $i=3,4, \ldots$, let

$$
T_{i}=\left[i b_{1}+\frac{i(i+1)}{2},(i+1) b_{1}+\frac{i(i+3)}{2}\right] .
$$

For all $i \geq 3$, we have $\min T_{i+1}=\max T_{i}+1$. Thus $T_{i} \cap T_{j}=\emptyset$ for all $i \neq j$.
Hence

$$
\left[3 b_{1}+6,+\infty\right]=\bigcup_{i=3}^{\infty} T_{i}
$$

Since $b_{2} \geq 3 b_{1}+5$, we know that there exists an $s \geq 3$ such that $b_{2}+1 \in T_{s}$.
Thus

$$
s b_{1}+\frac{s(s+1)}{2} \leq b_{2}+1 \leq(s+1) b_{1}+\frac{s(s+3)}{2}
$$

Let

$$
r=b_{2}+1-\left(b_{1}+1\right)-\left(b_{1}+2\right)-\cdots-\left(b_{1}+s\right) .
$$

Then $0 \leq r \leq b_{1}+s$. Hence,

$$
\begin{equation*}
b_{2}+1=\left(b_{1}+1\right)+\left(b_{1}+2\right)+\cdots+\left(b_{1}+s\right)+r, \quad 0 \leq r \leq b_{1}+s \tag{2.2}
\end{equation*}
$$

By the proof of [8, Theorem 1.3], we know that there exist r_{2}, \ldots, r_{s} and $\varepsilon(r)$ such that

$$
r=r_{2}+\cdots+r_{s}+\varepsilon(r), \quad 0 \leq r_{2} \leq r_{3} \leq \cdots \leq r_{s} \leq b_{1}-1
$$

where $r_{j}-r_{j-1} \leq b_{1}-2$ for any $3 \leq j \leq s ; \varepsilon(0)=0, \varepsilon(r)=1(r \geq 1)$.
Let $a_{k+1}=b_{1}+1$ and

$$
\begin{equation*}
a_{k+s}=b_{1}+s+r_{s}+\varepsilon(r), a_{k+t}=b_{1}+t+r_{t}, 2 \leq t \leq s-1 \tag{2.3}
\end{equation*}
$$

By (2.2)-(2.3), we have

$$
\begin{gather*}
a_{k+2}+\cdots+a_{k+s}+b_{1}=b_{2} \tag{2.4}\\
a_{k+t-1}<a_{k+t} \leq a_{k+t-1}+b_{1}, \quad 2 \leq t \leq s . \tag{2.5}
\end{gather*}
$$

Since $a_{k+1}=b_{1}+1$, by (2.1) we have

$$
P\left(\left\{a_{1}, \ldots, a_{k+1}\right\}\right)=\left[0,2 b_{1}\right] \backslash\left\{b_{1}\right\},
$$

$$
a_{k+2}+P\left(\left\{a_{1}, \ldots, a_{k+1}\right\}\right)=\left[a_{k+2}, a_{k+2}+2 b_{1}\right] \backslash\left\{a_{k+2}+b_{1}\right\} .
$$

Noting that $a_{k+1}<a_{k+2} \leq a_{k+1}+b_{1}$, we have

$$
P\left(\left\{a_{1}, \ldots, a_{k+2}\right\}\right)=\left[0, a_{k+2}+2 b_{1}\right] \backslash\left\{b_{1}, a_{k+2}+b_{1}\right\} .
$$

By (2.5) we know that for all integers $3 \leq t \leq s$ we have

$$
\begin{align*}
& a_{k+2}+\cdots+a_{k+t-1}+b_{1} \geq a_{k+t-1}+b_{1} \geq a_{k+t} \\
& a_{k+2}+\cdots+a_{k+t-1} \geq a_{k+t-1}+a_{k+2}>a_{k+t-1}+b_{1} \geq a_{k+t} \tag{2.6}
\end{align*}
$$

thus

$$
\begin{equation*}
a_{k+2}+\cdots+a_{k+t-1} \neq a_{k+t} . \tag{2.7}
\end{equation*}
$$

By (2.6) and (2.7), repeat Lemma 2.2(i) $s-2$ times, we have

$$
P\left(\left\{a_{1}, \ldots, a_{k+s}\right\}\right)=\left[0, a_{k+2}+\cdots+a_{k+s}+2 b_{1}\right] \backslash\left\{b_{1}, a_{k+2}+\cdots+a_{k+s}+b_{1}\right\} .
$$

Hence, by (2.4) we have $P\left(\left\{a_{1}, \ldots, a_{k+s}\right\}\right)=\left[0, b_{1}+b_{2}\right] \backslash\left\{b_{1}, b_{2}\right\}$.
This completes the proof of Lemma 2.3.

3. Proof of Theorem 1.1

We shall construct a set sequence $\left\{A_{k}\right\}_{k=3}^{\infty}$ such that, for $k \geq 4$
(i) $A_{k}=A_{k-1} \cup\left\{b_{k-1}+2 b_{k-3}, b_{k-1}+b_{k-2}-b_{k-3}, b_{k-1}+2 b_{k-2}-b_{k-3}\right\}$;
(ii) $P\left(A_{k}\right)=\left[0, b_{k}+b_{k-1}\right] \backslash\left\{b_{1}, \ldots, b_{k}, b_{k}+b_{k-1}-b_{i}: i=1, \ldots, k-2\right\}$.

By Lemma 2.3, there exists $A_{1}=\left\{a_{1}<\cdots<a_{k+s}<b_{1}+b_{2}\right\}$ such that

$$
\begin{equation*}
P\left(\left\{a_{1}, \ldots, a_{k+s}\right\}\right)=\left[0, b_{1}+b_{2}\right] \backslash\left\{b_{1}, b_{2}\right\}, \tag{3.1}
\end{equation*}
$$

where k, s are the indexes such that $a_{k}<b_{1}<a_{k+1}$ and

$$
s b_{1}+\frac{s(s+1)}{2} \leq b_{2}+1 \leq(s+1) b_{1}+\frac{s(s+3)}{2} .
$$

Let $a_{k+s+1}=b_{1}+b_{2}, a_{k+s+2}=2 b_{2}-2 b_{1}+2$. Noting that

$$
\max A_{1}=a_{k+s}<b_{1}+b_{2}<2 b_{2}-2 b_{1}+2
$$

we have
(3.2) $b_{1}+b_{2}+P\left(\left\{a_{1}, \ldots, a_{k+s}\right\}\right)=\left[b_{1}+b_{2}, 2 b_{1}+2 b_{2}\right] \backslash\left\{2 b_{1}+b_{2}, b_{1}+2 b_{2}\right\}$.

By (3.1), (3.2) and $b_{3}=3 b_{2}+2$, we have

$$
\begin{gathered}
P\left(\left\{a_{1}, \ldots, a_{k+s+1}\right\}\right)=\left[0,2 b_{1}+2 b_{2}\right] \backslash\left\{b_{1}, b_{2}, 2 b_{1}+b_{2}, b_{1}+2 b_{2}\right\}, \\
a_{k+s+2}+P\left(\left\{a_{1}, \ldots, a_{k+s+1}\right\}\right)=\left[2 b_{2}-2 b_{1}+2, b_{3}+b_{2}\right] \backslash \mathcal{B}_{0},
\end{gathered}
$$

where $\mathcal{B}_{0}=\left\{2 b_{2}-b_{1}+2,3 b_{2}-2 b_{1}+2, b_{3}, b_{3}+b_{2}-b_{1}\right\}$.
Write

$$
A_{3}=A_{1} \cup\left\{b_{1}+b_{2}, 2 b_{2}-2 b_{1}+2\right\} .
$$

Since $b_{2} \leq 4 b_{1}-2$, we have
$2 b_{2}-2 b_{1}+2 \leq 2 b_{1}+b_{2}<2 b_{2}-b_{1}+2<b_{1}+2 b_{2}<3 b_{2}-2 b_{1}+2 \leq 2 b_{1}+2 b_{2}$, we have

$$
P\left(A_{3}\right)=\left[0, b_{3}+b_{2}\right] \backslash\left\{b_{1}, b_{2}, b_{3}, b_{3}+b_{2}-b_{1}\right\} .
$$

To obtain the set A_{4} satisfying (i) and (ii), we shall add three integers $b_{3}+2 b_{1}, b_{3}+b_{2}-b_{1}, b_{3}+2 b_{2}-b_{1}$ to set A_{3}.

First, we have the following observation

$$
\max A_{3}=2 b_{2}-2 b_{1}+2<b_{3}+2 b_{1}<b_{3}+b_{2}-b_{1}<b_{3}+2 b_{2}-b_{1} .
$$

Second, noting that

$$
b_{3}+2 b_{1}+P\left(A_{3}\right)=\left[b_{3}+2 b_{1}, 2 b_{3}+b_{2}+2 b_{1}\right] \backslash \mathcal{B}_{3,1},
$$

where

$$
\mathcal{B}_{3,1}=\left\{b_{3}+3 b_{1}, b_{3}+b_{2}+2 b_{1}, 2 b_{3}+2 b_{1}, 2 b_{3}+b_{2}+b_{1}\right\} .
$$

Then by $b_{3}+2 b_{1}<b_{3}+b_{2}-b_{1}<b_{3}+3 b_{1}<b_{2}+b_{3}$, we have

$$
P\left(A_{3} \cup\left\{b_{3}+2 b_{1}\right\}\right)=\left[0,2 b_{3}+b_{2}+2 b_{1}\right] \backslash \mathcal{B}_{3,2},
$$

where

$$
\mathcal{B}_{3,2}=\left\{b_{1}, b_{2}, b_{3}, b_{3}+b_{2}+2 b_{1}, 2 b_{3}+2 b_{1}, 2 b_{3}+b_{2}+b_{1}\right\} .
$$

Noting that

$$
b_{3}+b_{2}-b_{1}+P\left(A_{3} \cup\left\{b_{3}+2 b_{1}\right\}\right)=\left[b_{3}+b_{2}-b_{1}, 3 b_{3}+2 b_{2}+b_{1}\right] \backslash \mathcal{B}_{3,3},
$$

where
$\mathcal{B}_{3,3}=\left\{b_{3}+b_{2}, b_{3}+2 b_{2}-b_{1}, 2 b_{3}+b_{2}-b_{1}, 2 b_{3}+2 b_{2}+b_{1}, 3 b_{3}+b_{2}+b_{1}, 3 b_{3}+2 b_{2}\right\}$.
Since
$b_{3}+b_{2}<b_{3}+b_{2}+2 b_{1}<b_{3}+2 b_{2}-b_{1}<2 b_{3}+2 b_{1}<2 b_{3}+b_{2}-b_{1}<2 b_{3}+b_{2}+b_{1}$,
we have

$$
P\left(A_{3} \cup\left\{b_{3}+2 b_{1}, b_{3}+b_{2}-b_{1}\right\}\right)=\left[0,3 b_{3}+2 b_{2}+b_{1}\right] \backslash \mathcal{B}_{3,4},
$$

where

$$
\mathcal{B}_{3,4}=\left\{b_{1}, b_{2}, b_{3}, 2 b_{3}+2 b_{2}+b_{1}, 3 b_{3}+b_{2}+b_{1}, 3 b_{3}+2 b_{2}\right\} .
$$

Noting that
$b_{3}+2 b_{2}-b_{1}+P\left(A_{3} \cup\left\{b_{3}+2 b_{1}, b_{3}+b_{2}-b_{1}\right\}\right)=\left[b_{3}+2 b_{2}-b_{1}, 4 b_{3}+4 b_{2}\right] \backslash \mathcal{B}_{3,5}$,
where
$\mathcal{B}_{3,5}=\left\{b_{3}+2 b_{2}, b_{3}+3 b_{2}-b_{1}, 2 b_{3}+2 b_{2}-b_{1}, 3 b_{3}+4 b_{2}, 4 b_{3}+3 b_{2}, 4 b_{3}+4 b_{2}-b_{1}\right\}$.
Since
$b_{3}+2 b_{2}<b_{3}+3 b_{2}-b_{1}<2 b_{3}+2 b_{2}-b_{1}<2 b_{3}+2 b_{2}+b_{1}<3 b_{3}+b_{2}+b_{1}<3 b_{3}+2 b_{2}$,
we have

$$
P\left(A_{3} \cup\left\{b_{3}+2 b_{1}, b_{3}+b_{2}-b_{1}, b_{3}+2 b_{2}-b_{1}\right\}\right)=\left[0,4 b_{3}+4 b_{2}\right] \backslash \mathcal{B}_{3,6}
$$

where

$$
\mathcal{B}_{3,6}=\left\{b_{1}, b_{2}, b_{3}, 3 b_{3}+4 b_{2}, 4 b_{3}+3 b_{2}, 4 b_{3}+4 b_{2}-b_{1}\right\} .
$$

Let

$$
\begin{equation*}
A_{4}=A_{3} \cup\left\{b_{3}+2 b_{1}, b_{3}+b_{2}-b_{1}, b_{3}+2 b_{2}-b_{1}\right\} . \tag{3.3}
\end{equation*}
$$

Since $b_{4}=3 b_{3}+4 b_{2}$, we have

$$
\begin{equation*}
P\left(A_{4}\right)=\left[0, b_{4}+b_{3}\right] \backslash\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{4}+b_{3}-b_{2}, b_{4}+b_{3}-b_{1}\right\} . \tag{3.4}
\end{equation*}
$$

By (3.3) and (3.4), we know that the result is true for $k=4$.
Suppose that the result is true for $k(\geq 4)$. That is,

$$
\begin{aligned}
A_{k} & =A_{k-1} \cup\left\{b_{k-1}+2 b_{k-3}, b_{k-1}+b_{k-2}-b_{k-3}, b_{k-1}+2 b_{k-2}-b_{k-3}\right\}, \\
P\left(A_{k}\right) & =\left[0, b_{k}+b_{k-1}\right] \backslash\left\{b_{1}, \ldots, b_{k}, b_{k}+b_{k-1}-b_{i}: i=1, \ldots, k-2\right\} .
\end{aligned}
$$

Now we consider the case $k+1$. we shall add three integers $b_{k}+2 b_{k-2}, b_{k}+$ $b_{k-1}-b_{k-2}, b_{k}+2 b_{k-1}-b_{k-2}$ to set A_{k}.

First, we have the following observation $\max A_{k}=b_{k-1}+2 b_{k-2}-b_{k-3}<b_{k}+2 b_{k-2}<b_{k}+b_{k-1}-b_{k-2}<b_{k}+2 b_{k-1}-b_{k-2}$.
Second, noting that

$$
b_{k}+2 b_{k-2}+P\left(A_{k}\right)=\left[b_{k}+2 b_{k-2}, 2 b_{k}+b_{k-1}+2 b_{k-2}\right] \backslash \mathcal{B}_{k, 1}
$$

where

$$
\mathcal{B}_{k, 1}=\left\{b_{k}+2 b_{k-2}+b_{i}, 2 b_{k}+b_{k-1}+2 b_{k-2}-b_{i}: i=1, \ldots, k-1\right\} .
$$

Since

$$
\begin{aligned}
& \mathbf{b}_{\mathbf{k}}+\mathbf{2} \mathbf{b}_{\mathbf{k}-\mathbf{2}}<b_{k}+2 b_{k-2}+b_{1}<\cdots<b_{k}+2 b_{k-2}+b_{k-3} \\
< & \mathbf{b}_{\mathbf{k}}+\mathbf{3} \mathbf{b}_{\mathbf{k}-\mathbf{2}} \neq b_{k}+b_{k-1}-b_{k-2} \\
< & \mathbf{b}_{\mathbf{k}}+\mathbf{b}_{\mathbf{k}-\mathbf{1}}-\mathbf{b}_{\mathbf{k}-\mathbf{3}}<\cdots<\mathbf{b}_{\mathbf{k}}+\mathbf{b}_{\mathbf{k}-\mathbf{1}}-\mathbf{b}_{\mathbf{1}},
\end{aligned}
$$

we have

$$
P\left(A_{k} \cup\left\{b_{k}+2 b_{k-2}\right\}\right)=\left[0,2 b_{k}+b_{k-1}+2 b_{k-2}\right] \backslash \mathcal{B}_{k, 2},
$$

where

$$
\mathcal{B}_{k, 2}=\left\{b_{1}, \ldots, b_{k}, 2 b_{k}+b_{k-1}+2 b_{k-2}-b_{i}: i=1, \ldots, k\right\} .
$$

Noting that

$$
\begin{aligned}
& b_{k}+b_{k-1}-b_{k-2}+P\left(A_{k} \cup\left\{b_{k}+2 b_{k-2}\right\}\right) \\
= & {\left[b_{k}+b_{k-1}-b_{k-2}, 3 b_{k}+2 b_{k-1}+b_{k-2}\right] \backslash \mathcal{B}_{k, 3}, }
\end{aligned}
$$

where

$$
\mathcal{B}_{k, 3}=\left\{b_{k}+b_{k-1}-b_{k-2}+b_{i}, 3 b_{k}+2 b_{k-1}+b_{k-2}-b_{i}: i=1, \ldots, k\right\} .
$$

Since

$$
\begin{aligned}
& \mathbf{b}_{\mathbf{k}}+\mathbf{b}_{\mathbf{k}-\mathbf{1}}-\mathbf{b}_{\mathbf{k}-\mathbf{2}}<b_{k}+b_{k-1}-b_{k-2}+b_{1}<\cdots<b_{k}+b_{k-1} \\
< & \mathbf{b}_{\mathbf{k}}+\mathbf{b}_{\mathbf{k}-\mathbf{1}}+\mathbf{2} \mathbf{b}_{\mathbf{k}-\mathbf{2}}<b_{k}+2 b_{k-1}-b_{k-2}<2 b_{k}+2 b_{k-2}<2 b_{k}+b_{k-1}-b_{k-2} \\
< & \mathbf{2} \mathbf{b}_{\mathbf{k}}+\mathbf{b}_{\mathbf{k}-\mathbf{1}}+\mathbf{b}_{\mathbf{k}-\mathbf{2}}<\cdots<2 b_{k}+b_{k-1}+2 b_{k-2}-b_{1},
\end{aligned}
$$

we have

$$
\begin{aligned}
& P\left(A_{k} \cup\left\{b_{k}+2 b_{k-2}, b_{k}+b_{k-1}-b_{k-2}\right\}\right) \\
= & {\left[0,3 b_{k}+2 b_{k-1}+b_{k-2}\right] \backslash \mathcal{B}_{k, 4}, }
\end{aligned}
$$

where

$$
\mathcal{B}_{k, 4}=\left\{b_{1}, \ldots, b_{k}, 3 b_{k}+2 b_{k-1}+b_{k-2}-b_{i}: i=1, \ldots, k\right\} .
$$

Noting that

$$
\begin{aligned}
& b_{k}+2 b_{k-1}-b_{k-2}+P\left(A_{k} \cup\left\{b_{k}+2 b_{k-2}, b_{k}+b_{k-1}-b_{k-2}\right\}\right) \\
= & {\left[b_{k}+2 b_{k-1}-b_{k-2}, 4 b_{k}+4 b_{k-1}\right] \backslash \mathcal{B}_{k, 5}, }
\end{aligned}
$$

where

$$
\mathcal{B}_{k, 5}=\left\{b_{k}+2 b_{k-1}-b_{k-2}+b_{i}, 4 b_{k}+4 b_{k-1}-b_{i}: i=1, \ldots, k\right\} .
$$

Since

$$
\begin{aligned}
& \mathbf{b}_{\mathbf{k}}+\mathbf{2} \mathbf{b}_{\mathbf{k}-\mathbf{1}}-\mathbf{b}_{\mathbf{k}-\mathbf{2}}<b_{k}+2 b_{k-1}-b_{k-2}+b_{1}<\cdots<2 b_{k}+2 b_{k-1}-b_{k-2} \\
< & \mathbf{2} \mathbf{b}_{\mathbf{k}}+\mathbf{2} \mathbf{b}_{\mathbf{k}-\mathbf{1}}+\mathbf{b}_{\mathbf{k}-\mathbf{2}}<\cdots<\mathbf{3 b}_{\mathbf{k}}+\mathbf{2} \mathbf{b}_{\mathbf{k}-\mathbf{1}}+\mathbf{b}_{\mathbf{k}-\mathbf{2}}-\mathbf{b}_{\mathbf{1}},
\end{aligned}
$$

we have
$P\left(A_{k} \cup\left\{b_{k}+2 b_{k-2}, b_{k}+b_{k-1}-b_{k-2}, b_{k}+2 b_{k-1}-b_{k-2}\right\}\right)=\left[0,4 b_{k}+4 b_{k-1}\right] \backslash \mathcal{B}_{k, 6}$,
where

$$
\mathcal{B}_{k, 6}=\left\{b_{1}, \ldots, b_{k}, 4 b_{k}+4 b_{k-1}-b_{i}: i=1, \ldots, k\right\}
$$

Write

$$
A_{k+1}=A_{k} \cup\left\{b_{k}+2 b_{k-2}, b_{k}+b_{k-1}-b_{k-2}, b_{k}+2 b_{k-1}-b_{k-2}\right\}
$$

Since $b_{k+1}=3 b_{k}+4 b_{k-1}$, we have

$$
P\left(A_{k+1}\right)=\left[0, b_{k+1}+b_{k}\right] \backslash\left\{b_{1}, \ldots, b_{k+1}, b_{k+1}+b_{k}-b_{i}: i=1, \ldots, k-1\right\} .
$$

This completes the proof of Theorem 1.1.

4. Proof of Corollary 1.2

Let $A_{k}(k=3,4, \ldots)$ be as in Lemma 2.3. Write

$$
A=\bigcup_{k=4}^{\infty} A_{k}
$$

For any $n \in P(A)$, we may assume that $n \leq b_{k-1}+2 b_{k-2}-b_{k-3}$ for some $k \geq 4$. For all $i \geq k$, we have

$$
A \backslash A_{i} \subseteq\left[b_{k-1}+2 b_{k-2}-b_{k-3}+1,+\infty\right)
$$

Thus, we have $n \in P\left(A_{k}\right)$. By Theorem 1.1 we have

$$
\begin{equation*}
n \notin\left\{b_{1}, \ldots, b_{k}, b_{k}+b_{k-1}-b_{i}: i=1, \ldots, k-2\right\} . \tag{4.1}
\end{equation*}
$$

Noting that $n \leq b_{k-1}+2 b_{k-2}-b_{k-3}<b_{k}$, we know that if $n \in B$, then $n \in\left\{b_{1}, \ldots, b_{k}\right\}$, which contradicts with (4.1). Hence, we have $n \notin B$. That is, $n \in \mathbb{N} \backslash B$.

Conversely, if $n^{\prime} \in \mathbb{N} \backslash B$, then $n^{\prime} \notin B$, let $n^{\prime}<b_{k^{\prime}}$, we have

$$
n^{\prime} \notin\left\{b_{1}, \ldots, b_{k^{\prime}}, b_{k^{\prime}}+b_{k^{\prime}-1}-b_{i}: i=1, \ldots, k^{\prime}-2\right\} .
$$

By Theorem 1.1 we have $n^{\prime} \in P\left(A_{k^{\prime}}\right)$. So $n^{\prime} \in P(A)$.
Hence $P(A)=\mathbb{N} \backslash B$.
This completes the proof of Corollary 1.2.

5. Proof of Theorem 1.4

By Theorem D, we know that if $b_{1} \in\{3,5,6,9,10\}$, then there is no a sequence of positive integers $A=\left\{a_{1}<a_{2}<\cdots\right\}$ for which $P(A)=\mathbb{N} \backslash B$. Now, it is sufficient to consider a positive integers sequence $B=\left\{b_{1}<b_{2}<\cdots\right\}$ with $b_{1} \in\{4,7,8\} \cup\{b: b \geq 11, b \in \mathbb{N}\}$.

By Lemma 2.1, there exists $A_{1}=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\} \subseteq\left[1, b_{1}-1\right]$ such that $P\left(A_{1}\right)=\left[0, b_{1}-1\right]$. Then

$$
a_{k+1}+P\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)=\left[a_{k+1}, a_{k+1}+b_{1}-1\right] .
$$

Assume that there exists a sequence $A=\left\{a_{1}<a_{2}<\cdots\right\}$ of positive integers such that $P(A)=\mathbb{N} \backslash B$. Noting that $b_{1} \notin P(A)$ and $b_{2} \in\left[b_{1}+2,2 b_{1}\right] \cup\left[2 b_{1}+\right.$ $2, \infty)$, we have $a_{k+1}=b_{1}+1$. Hence

$$
\begin{gathered}
P\left(\left\{a_{1}, \ldots, a_{k+1}\right\}\right)=\left[0,2 b_{1}\right] \backslash\left\{b_{1}\right\} \\
a_{k+2}+P\left(\left\{a_{1}, \ldots, a_{k+1}\right\}\right)=\left[a_{k+2}, a_{k+2}+2 b_{1}\right] \backslash\left\{a_{k+2}+b_{1}\right\} .
\end{gathered}
$$

If $a_{k+2} \geq 2 b_{1}+2$, then $2 b_{1}+1 \notin P(A)$ and $b_{2}=2 b_{1}+1$, a contradiction. So

$$
\begin{gather*}
a_{k+2} \leq 2 b_{1}+1 \tag{5.1}\\
P\left(\left\{a_{1}, \ldots, a_{k+2}\right\}\right)=\left[0, a_{k+2}+2 b_{1}\right] \backslash\left\{b_{1}, a_{k+2}+b_{1}\right\} . \tag{5.2}
\end{gather*}
$$

If $b_{1}+2 \leq b_{2} \leq 2 b_{1}$, then by $a_{k+2}>a_{k+1}=b_{1}+1$ and (5.2), we have

$$
b_{2} \geq a_{k+2}+b_{1} \geq 2 b_{1}+2
$$

a contradiction.
Now we consider the following two cases:
Case 1. $b_{2}=3 b_{1}+3$. If $a_{k+2} \geq b_{1}+3$, then $b_{2} \in\left[0, a_{k+2}+2 b_{1}\right]$. Since $b_{2} \notin P\left(\left\{a_{1}, \ldots, a_{k+2}\right\}\right)$, we have $b_{2}=a_{k+2}+b_{1}$. Thus

$$
a_{k+2}=b_{2}-b_{1}=2 b_{1}+3>2 b_{1}+1
$$

which contradicts with (5.1). Thus $a_{k+2}=b_{1}+2$ and by (5.2) we have

$$
P\left(\left\{a_{1}, \ldots, a_{k+2}\right\}\right)=\left[0,3 b_{1}+2\right] \backslash\left\{b_{1}, 2 b_{1}+2\right\}
$$

Hence
$a_{k+3}+P\left(\left\{a_{1}, \ldots, a_{k+2}\right\}\right)=\left[a_{k+3}, a_{k+3}+3 b_{1}+2\right] \backslash\left\{a_{k+3}+b_{1}, a_{k+3}+2 b_{1}+2\right\}$.

If $a_{k+3} \geq 2 b_{1}+3$, then $2 b_{1}+2 \notin P(A)$, thus $b_{2}=2 b_{1}+2$, a contradiction. Hence $a_{k+3} \leq 2 b_{1}+2$.

Since $a_{k+3}>a_{k+2}$, we have $a_{k+3} \geq b_{1}+3$, thus $b_{1}+a_{k+3} \neq 2 b_{1}+2$ and

$$
P\left(\left\{a_{1}, \ldots, a_{k+3}\right\}\right)=\left[0, a_{k+3}+3 b_{1}+2\right] \backslash\left\{b_{1}, a_{k+3}+2 b_{1}+2\right\} .
$$

Since $b_{2}=3 b_{1}+3 \in\left[0, a_{k+3}+3 b_{1}+2\right]$ and $b_{2} \notin P\left(\left\{a_{1}, \ldots, a_{k+3}\right\}\right)$, we have

$$
b_{2}=3 b_{1}+3=a_{k+3}+2 b_{1}+2 \geq 3 b_{1}+5
$$

a contradiction.
Case 2. $b_{2}=3 b_{1}+2$. Since $a_{k+2} \geq b_{1}+2$, then $b_{2} \in\left[0, a_{k+2}+2 b_{1}\right]$. Since $b_{2} \notin P\left(\left\{a_{1}, \ldots, a_{k+2}\right\}\right)$, we have $b_{2}=a_{k+2}+b_{1}$. Thus

$$
a_{k+2}=b_{2}-b_{1}=2 b_{1}+2>2 b_{1}+1
$$

which contradicts with (5.1).
This completes the proof of Theorem 1.4.

References

[1] S. A. Burr, Combinatorial Theory and Its Applications III, Ed. P. Erdős, A. Rényi, V.T. Sós, North-Holland, Amsterdam, 1970.
[2] Y.-G. Chen and J.-H. Fang, On a problem in additive number theory, Acta Math. Hungar. 134 (2012), no. 4, 416-430. https://doi.org/10.1007/s10474-011-0157-4
[3] Y.-G. Chen and J.-D. Wu, The inverse problem on subset sums, European J. Combin. 34 (2013), no. 5, 841-845. https://doi.org/10.1016/j.ejc.2012.12.005
[4] J.-H. Fang and Z.-K. Fang, On an inverse problem in additive number theory, Acta Math. Hungar. 158 (2019), no. 1, 36-39. https://doi.org/10.1007/s10474-019-00920-x
[5] J.-H. Fang and Z.-K. Fang, On the critical values in subset sum, European J. Combin. 89 (2020), 103158, 6 pp. https://doi.org/10.1016/j.ejc.2020. 103158
[6] N. Hegyvári, On representation problems in the additive number theory, Acta Math. Hungar. 72 (1996), no. 1-2, 35-44. https://doi.org/10.1007/BF00053695
[7] J.-D. Wu, The inverse problem on subset sums, II, J. Integer Seq. 16 (2013), no. 8, Article 13.8.4, 5 pp .
[8] B.-L. Wu and X.-H. Yan, On a problem of J. H. Fang and Z. K. Fang, Acta Math. Hungar. 162 (2020), no. 1, 98-104. https://doi.org/10.1007/s10474-020-01092-9
[9] X.-H. Yan and B.-L. Wu, On the critical values of Burr's problem, European J. Combin. 97 (2021), Paper No. 103392, 8 pp. https://doi.org/10.1016/j.ejc.2021. 103392

Min Tang

School of Mathematics and Statistics
Anhui Normal University
Wuhu 241002, P. R. China
Email address: tmzzz2000@163.com
Hongwei Xu
School of Mathematics and Statistics
Anhui Normal University
Wuhu 241002, P. R. China
Email address: 2841360179@qq.com

[^0]: Received April 2, 2021; Accepted August 1, 2022.
 2020 Mathematics Subject Classification. Primary 11B13.
 Key words and phrases. Subset sum, complement, Burr's problem.
 This work was supported by the National Natural Science Foundation of China(Grant No. 11971033) and top talents project of Anhui Department of Education(Grant No. gxbjZD05).

