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SOME REMARKS ON PROBLEMS OF SUBSET SUM

Min Tang and Hongwei Xu

Abstract. Let A = {a1 < a2 < · · · } be a sequence of integers and let

P (A) = {
∑

εiai : ai ∈ A, εi = 0 or 1,
∑

εi <∞}. Burr posed the follow-
ing question: Determine conditions on integers sequence B that imply

either the existence or the non-existence of A for which P (A) is the set

of all non-negative integers not in B. In this paper, we focus on some
problems of subset sum related to Burr’s question.

1. Introduction

Let N be the set of all nonnegative integers. For a sequence of integers
A = {a1 < a2 < · · · }, let

P (A) =
{∑

εiai : ai ∈ A, εi = 0 or 1,
∑

εi <∞
}
.

Here 0 ∈ P (A).
In 1970, Burr [1] asked the following question: Determine conditions on

integers sequence B that imply either the existence or the non-existence of A
for which P (A) is the set of all non-negative integers not in B. He showed the
following result (unpublished):

Theorem A ([1]). Let B = {4 ≤ b1 < b2 < · · · } be a sequence of integers for
which bn+1 ≥ b2n for n = 1, 2, . . .. Then there exists A = {a1 < a2 < · · · } for
which P (A) = N \B.

Burr [1] ever mentioned that if B grows “sufficiently rapidly”, then there
exists a sequence A such that P (A) = N \ B. More previous work has helped
to clarify what “sufficiently rapidly” means.

In 1996, Hegyvári [6] improved Burr’s result by relaxing the restriction
“bn+1 ≥ b2n(n ≥ 1)” to “bn+1 ≥ 5bn(n ≥ 1)”.
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Theorem B ([6], Theorem 1). Let B = {7 ≤ b1 < b2 < · · · } be a sequence of
integers. Suppose that for every n, bn+1 ≥ 5bn. Then there exists a sequence
of integers A = {a1 < a2 < · · · } for which P (A) = N \B.

In 2012, Chen and Fang [2] precisely extended Hegyvári’s result by elemen-
tary but not easy argument.

Theorem C ([2], Theorem 1). Let B = {b1 < b2 < · · · } be a sequence of
integers with b1 ∈ {4, 7, 8} ∪ {b : b ≥ 11, b ∈ N} and bn+1 ≥ 3bn + 5 for all
n ≥ 1. Then there exists a sequence of positive integers A = {a1 < a2 < · · · }
for which P (A) = N \B.

Theorem D ([2], Theorem 2). Let B = {b1 < b2 < · · · } be a sequence of
positive integers with b1 ∈ {3, 5, 6, 9, 10} or b2 = 3b1 + 4 or b1 = 1, b2 = 9 or
b1 = 2, b2 = 15. Then there is no a sequence of positive integers A = {a1 <
a2 < · · · } for which P (A) = N \B.

In 2013, Chen and Wu [3] further relaxed the restriction “bn+1 ≥ 3bn + 5”
of Theorem D.

Theorem E ([3], Theorem 1). If B = {b1 < b2 < · · · } is a sequence of
integers with b1 ∈ {4, 7, 8} ∪ {b : b ≥ 11, b ∈ N}, b2 ≥ 3b1 + 5, b3 ≥ 3b2 + 3
and bn+1 > 3bn − bn−2 for all n ≥ 3, then there exists a sequence of positive
integers A = {a1 < a2 < · · · } such that P (A) = N \B and

P (As) = [0, 2bs] \ {b1, . . . , bs, 2bs − bs−1, . . . , 2bs − b1},
where As = A ∩ [0, bs − bs−1] for all s ≥ 2.

Theorem F ([3], Theorem 2). Let B = {b1 < b2 < · · · } be a sequence of
integers and d1 = 10, d2 = 3b1+4, d3 = 3b2+2 and dn+1 = 3bn−bn−2 (n ≥ 3).
If bm = dm for some m ≥ 1 and bn > dn for all n 6= m, then there is no a
sequence of positive integers A = {a1 < a2 < · · · } such that

(1.1) P (As) = [0, 2bs] \ {b1, . . . , bs, 2bs − bs−1, . . . , 2bs − b1},
where As = A ∩ [0, bs − bs−1] for all s ≥ 2.

Moreover, Chen and Wu [3] posed the following problem:

Problem 1 ([3], Problem 1). Let B = {b1 < b2 < · · · } be a sequence of positive
integers. Let d1 = 10, d2 = 3b1+4, d3 = 3b2+2 and dn+1 = 3bn−bn−2 (n ≥ 3).
If bm = dm for some m ≥ 3 and bn > dn for all n 6= m. Is it true that there is
no a sequence of positive integers A = {a1 < a2 < · · · } with P (A) = N \B?

With the further research of Burr’s question, many related problems arise.
For the related problems, see [4, 5, 7–9].

In this paper, we give a further contribution to this problem:

Theorem 1.1. Let B = {b1 < b2 < · · · } be a sequence of integers with b1 ∈
{4, 7, 8} ∪ {b : b ≥ 11, b ∈ N}, if 3b1 + 5 ≤ b2 ≤ 4b1 − 2, b3 = 3b2 + 2 and
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bn+1 = 3bn + 4bn−1 for all n ≥ 3, then there exists a sequence of positive
integers A = {a1 < a2 < · · · } such that, for all k ≥ 4,

P (Ak) = [0, bk + bk−1] \ {b1, . . . , bk, bk + bk−1 − bi : i = 1, . . . , k − 2},

where Ak = A ∩ [0, bk−1 + 2bk−2 − bk−3].

Corollary 1.2. Let B be as defined above. Then there exists a sequence of
positive integers A = {a1 < a2 < · · · } such that P (A) = N \B.

Remark 1.3. By Theorem F, choose m = 3, we know that if B = {11 ≤ b1 <
b2 < · · · } is a sequence of integers with

(1.2) b2 ≥ 3b1 + 5, b3 = 3b2 + 2, bn+1 ≥ 3bn − bn−2 (n ≥ 3),

then there is no a sequence of positive integers A = {a1 < a2 < · · · } such
that (1.1). Our results show that given positive integers sequences B satisfying
(1.2), although there is no a sequence of positive integers A satisfies “local”
property (1.1), the sequence A satisfies other new “local” property, so that the
sequence A still satisfies “global” property: P (A) = N \ B. This result also
shows that the answer to Problem 1 is negative for m = 3.

Moreover, we obtain a supplement result to Theorem D.

Theorem 1.4. Let B = {3 ≤ b1 < b2 < · · · } be a sequence of integers. If
b2 ∈ [b1 + 2, 2b1] ∪ {3b1 + 2, 3b1 + 3}, then there is no a sequence of positive
integers A = {a1 < a2 < · · · } such that P (A) = N \B.

2. Lemmas

Lemma 2.1 ([8], Lemma 2.2). Let b1 ∈ {4, 7, 8}∪ [11,∞) be an integer. Then
there exists a sequence of positive integers A1 with A1 ⊂ [0, b1 − 1] such that
P (A1) = [0, b1 − 1].

Lemma 2.2 ([8], Lemma 2.3). Let A = {a1 < a2 < · · · } and B = {b1 < b2 <
· · · } be two sequences of positive integers. For any integer t ≥ 3, let

P ({a1, . . . , ak+t−1})
= [0, ak+2 + · · ·+ ak+t−1 + 2b1]\{b1, ak+2 + · · ·+ ak+t−1 + b1}.

(i) If ak+2 + · · ·+ ak+t−1 + b1 ≥ ak+t and ak+2 + · · ·+ ak+t−1 6= ak+t, then

P ({a1, . . . , ak+t}) = [0, ak+2 + · · ·+ ak+t + 2b1]\{b1, ak+2 + · · ·+ ak+t + b1}.

(ii) If ak+2 + · · ·+ ak+t−1 + b1 < ak+t, then b3 > b2 + b1.
(iii) If ak+2 + · · ·+ak+t−1 = ak+t and ak+t + b1 < ak+t+1, then b3 > b2 + b1.
(iv) If ak+2 + · · ·+ ak+t−1 = ak+t and ak+t + b1 ≥ ak+t+1, then

P ({a1, . . . , ak+t+1}) = [0, ak+2+· · ·+ak+t+1+2b1]\{b1, ak+2+· · ·+ak+t+1+b1}.

The following lemma is contained in the proof of [8, Theorem 1.3]. For the
sake of readability, we give a self-contained proof.



1342 M. TANG AND H. W. XU

Lemma 2.3. Let b1, b2 be two positive integers satisfying b1 ∈ {4, 7, 8} ∪ {b :
b ≥ 11, b ∈ N}. If b2 ≥ 3b1 + 5, then there exists a finite sequence of positive
integers A = {a1 < · · · < ak < ak+1 < · · · < ak+s < b1 + b2} such that

P ({a1, . . . , ak+s}) = [0, b1 + b2]\{b1, b2},
where k, s are the indexes such that ak < b1 < ak+1 and

sb1 +
s(s + 1)

2
≤ b2 + 1 ≤ (s + 1)b1 +

s(s + 3)

2
.

Proof. By Lemma 2.1, there exists A1 = {a1 < a2 < · · · < ak} ⊂ [0, b1 − 1]
such that

(2.1) P (A1) = [0, b1 − 1],

where k is the indexes such that ak < b1 < ak+1. For i = 3, 4, . . ., let

Ti =

[
ib1 +

i(i + 1)

2
, (i + 1)b1 +

i(i + 3)

2

]
.

For all i ≥ 3, we have minTi+1 = maxTi + 1. Thus Ti ∩ Tj = ∅ for all i 6= j.
Hence

[3b1 + 6,+∞] =

∞⋃
i=3

Ti.

Since b2 ≥ 3b1 + 5, we know that there exists an s ≥ 3 such that b2 + 1 ∈ Ts.
Thus

sb1 +
s(s + 1)

2
≤ b2 + 1 ≤ (s + 1)b1 +

s(s + 3)

2
.

Let

r = b2 + 1− (b1 + 1)− (b1 + 2)− · · · − (b1 + s).

Then 0 ≤ r ≤ b1 + s. Hence,

(2.2) b2 + 1 = (b1 + 1) + (b1 + 2) + · · ·+ (b1 + s) + r, 0 ≤ r ≤ b1 + s.

By the proof of [8, Theorem 1.3], we know that there exist r2, . . . , rs and ε(r)
such that

r = r2 + · · ·+ rs + ε(r), 0 ≤ r2 ≤ r3 ≤ · · · ≤ rs ≤ b1 − 1,

where rj − rj−1 ≤ b1 − 2 for any 3 ≤ j ≤ s; ε(0) = 0, ε(r) = 1 (r ≥ 1).
Let ak+1 = b1 + 1 and

(2.3) ak+s = b1 + s + rs + ε(r), ak+t = b1 + t + rt, 2 ≤ t ≤ s− 1.

By (2.2)-(2.3), we have

(2.4) ak+2 + · · ·+ ak+s + b1 = b2.

(2.5) ak+t−1 < ak+t ≤ ak+t−1 + b1, 2 ≤ t ≤ s.

Since ak+1 = b1 + 1, by (2.1) we have

P ({a1, . . . , ak+1}) = [0, 2b1]\{b1},
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ak+2 + P ({a1, . . . , ak+1}) = [ak+2, ak+2 + 2b1]\{ak+2 + b1}.
Noting that ak+1 < ak+2 ≤ ak+1 + b1, we have

P ({a1, . . . , ak+2}) = [0, ak+2 + 2b1]\{b1, ak+2 + b1}.
By (2.5) we know that for all integers 3 ≤ t ≤ s we have

(2.6)
ak+2 + · · ·+ ak+t−1 + b1 ≥ ak+t−1 + b1 ≥ ak+t,

ak+2 + · · ·+ ak+t−1 ≥ ak+t−1 + ak+2 > ak+t−1 + b1 ≥ ak+t,

thus

(2.7) ak+2 + · · ·+ ak+t−1 6= ak+t.

By (2.6) and (2.7), repeat Lemma 2.2(i) s− 2 times, we have

P ({a1, . . . , ak+s}) = [0, ak+2 + · · ·+ ak+s + 2b1]\{b1, ak+2 + · · ·+ ak+s + b1}.
Hence, by (2.4) we have P ({a1, . . . , ak+s}) = [0, b1 + b2]\{b1, b2}.

This completes the proof of Lemma 2.3. �

3. Proof of Theorem 1.1

We shall construct a set sequence {Ak}∞k=3 such that, for k ≥ 4
(i) Ak = Ak−1 ∪ {bk−1 + 2bk−3, bk−1 + bk−2 − bk−3, bk−1 + 2bk−2 − bk−3};
(ii) P (Ak) = [0, bk + bk−1] \ {b1, . . . , bk, bk + bk−1 − bi : i = 1, . . . , k − 2}.
By Lemma 2.3, there exists A1 = {a1 < · · · < ak+s < b1 + b2} such that

(3.1) P ({a1, . . . , ak+s}) = [0, b1 + b2]\{b1, b2},
where k, s are the indexes such that ak < b1 < ak+1 and

sb1 +
s(s + 1)

2
≤ b2 + 1 ≤ (s + 1)b1 +

s(s + 3)

2
.

Let ak+s+1 = b1 + b2, ak+s+2 = 2b2 − 2b1 + 2. Noting that

maxA1 = ak+s < b1 + b2 < 2b2 − 2b1 + 2,

we have

(3.2) b1 + b2 + P ({a1, . . . , ak+s}) = [b1 + b2, 2b1 + 2b2]\{2b1 + b2, b1 + 2b2}.
By (3.1), (3.2) and b3 = 3b2 + 2, we have

P ({a1, . . . , ak+s+1}) = [0, 2b1 + 2b2]\{b1, b2, 2b1 + b2, b1 + 2b2},
ak+s+2 + P ({a1, . . . , ak+s+1}) = [2b2 − 2b1 + 2, b3 + b2] \ B0,

where B0 = {2b2 − b1 + 2, 3b2 − 2b1 + 2, b3, b3 + b2 − b1}.
Write

A3 = A1 ∪ {b1 + b2, 2b2 − 2b1 + 2}.
Since b2 ≤ 4b1 − 2, we have

2b2 − 2b1 + 2 ≤ 2b1 + b2 < 2b2 − b1 + 2 < b1 + 2b2 < 3b2 − 2b1 + 2 ≤ 2b1 + 2b2,

we have
P (A3) = [0, b3 + b2] \ {b1, b2, b3, b3 + b2 − b1}.
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To obtain the set A4 satisfying (i) and (ii), we shall add three integers
b3 + 2b1, b3 + b2 − b1, b3 + 2b2 − b1 to set A3.

First, we have the following observation

maxA3 = 2b2 − 2b1 + 2 < b3 + 2b1 < b3 + b2 − b1 < b3 + 2b2 − b1.

Second, noting that

b3 + 2b1 + P (A3) = [b3 + 2b1, 2b3 + b2 + 2b1] \ B3,1,
where

B3,1 =
{
b3 + 3b1, b3 + b2 + 2b1, 2b3 + 2b1, 2b3 + b2 + b1

}
.

Then by b3 + 2b1 < b3 + b2 − b1 < b3 + 3b1 < b2 + b3, we have

P (A3 ∪ {b3 + 2b1}) = [0, 2b3 + b2 + 2b1] \ B3,2,
where

B3,2 =
{
b1, b2, b3, b3 + b2 + 2b1, 2b3 + 2b1, 2b3 + b2 + b1

}
.

Noting that

b3 + b2 − b1 + P (A3 ∪ {b3 + 2b1}) = [b3 + b2 − b1, 3b3 + 2b2 + b1] \ B3,3,
where

B3,3 =
{
b3+b2, b3+2b2−b1, 2b3+b2−b1, 2b3+2b2+b1, 3b3+b2+b1, 3b3+2b2

}
.

Since

b3 +b2 < b3 +b2 +2b1 < b3 +2b2−b1 < 2b3 +2b1 < 2b3 +b2−b1 < 2b3 +b2 +b1,

we have

P (A3 ∪ {b3 + 2b1, b3 + b2 − b1}) = [0, 3b3 + 2b2 + b1] \ B3,4,
where

B3,4 =
{
b1, b2, b3, 2b3 + 2b2 + b1, 3b3 + b2 + b1, 3b3 + 2b2

}
.

Noting that

b3 + 2b2− b1 +P (A3 ∪{b3 + 2b1, b3 + b2− b1}) = [b3 + 2b2− b1, 4b3 + 4b2] \B3,5,
where

B3,5 =
{
b3 +2b2, b3 +3b2−b1, 2b3 +2b2−b1, 3b3 +4b2, 4b3 +3b2, 4b3 +4b2−b1

}
.

Since

b3+2b2 < b3+3b2−b1 < 2b3+2b2−b1 < 2b3+2b2+b1 < 3b3+b2+b1 < 3b3+2b2,

we have

P (A3 ∪ {b3 + 2b1, b3 + b2 − b1, b3 + 2b2 − b1}) = [0, 4b3 + 4b2] \ B3,6,
where

B3,6 =
{
b1, b2, b3, 3b3 + 4b2, 4b3 + 3b2, 4b3 + 4b2 − b1

}
.
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Let

(3.3) A4 = A3 ∪ {b3 + 2b1, b3 + b2 − b1, b3 + 2b2 − b1}.
Since b4 = 3b3 + 4b2, we have

(3.4) P (A4) = [0, b4 + b3] \ {b1, b2, b3, b4, b4 + b3 − b2, b4 + b3 − b1}.
By (3.3) and (3.4), we know that the result is true for k = 4.

Suppose that the result is true for k(≥ 4). That is,

Ak = Ak−1 ∪ {bk−1 + 2bk−3, bk−1 + bk−2 − bk−3, bk−1 + 2bk−2 − bk−3},
P (Ak) = [0, bk + bk−1] \ {b1, . . . , bk, bk + bk−1 − bi : i = 1, . . . , k − 2}.
Now we consider the case k + 1. we shall add three integers bk + 2bk−2, bk +

bk−1 − bk−2, bk + 2bk−1 − bk−2 to set Ak.
First, we have the following observation

maxAk = bk−1+2bk−2−bk−3 < bk+2bk−2 < bk+bk−1−bk−2 < bk+2bk−1−bk−2.
Second, noting that

bk + 2bk−2 + P (Ak) = [bk + 2bk−2, 2bk + bk−1 + 2bk−2] \ Bk,1,
where

Bk,1 =
{
bk + 2bk−2 + bi, 2bk + bk−1 + 2bk−2 − bi : i = 1, . . . , k − 1

}
.

Since

bk + 2bk−2 < bk + 2bk−2 + b1 < · · · < bk + 2bk−2 + bk−3

< bk + 3bk−2 6= bk + bk−1 − bk−2

< bk + bk−1 − bk−3 < · · · < bk + bk−1 − b1,

we have

P (Ak ∪ {bk + 2bk−2}) = [0, 2bk + bk−1 + 2bk−2] \ Bk,2,
where

Bk,2 =
{
b1, . . . , bk, 2bk + bk−1 + 2bk−2 − bi : i = 1, . . . , k

}
.

Noting that

bk + bk−1 − bk−2 + P (Ak ∪ {bk + 2bk−2})
= [bk + bk−1 − bk−2, 3bk + 2bk−1 + bk−2] \ Bk,3,

where

Bk,3 =
{
bk + bk−1 − bk−2 + bi, 3bk + 2bk−1 + bk−2 − bi : i = 1, . . . , k

}
.

Since

bk+bk−1−bk−2 < bk+bk−1−bk−2+b1 < · · · < bk+bk−1

< bk+bk−1+2bk−2 < bk+2bk−1−bk−2 < 2bk+2bk−2 < 2bk+bk−1−bk−2
< 2bk+bk−1+bk−2 < · · · < 2bk+bk−1+2bk−2−b1,
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we have

P (Ak ∪ {bk + 2bk−2, bk + bk−1 − bk−2})
= [0, 3bk + 2bk−1 + bk−2] \ Bk,4,

where

Bk,4 =
{
b1, . . . , bk, 3bk + 2bk−1 + bk−2 − bi : i = 1, . . . , k

}
.

Noting that

bk + 2bk−1 − bk−2 + P (Ak ∪ {bk + 2bk−2, bk + bk−1 − bk−2})
= [bk + 2bk−1 − bk−2, 4bk + 4bk−1] \ Bk,5,

where

Bk,5 =
{
bk + 2bk−1 − bk−2 + bi, 4bk + 4bk−1 − bi : i = 1, . . . , k

}
.

Since

bk + 2bk−1 − bk−2 < bk + 2bk−1 − bk−2 + b1 < · · · < 2bk + 2bk−1 − bk−2

< 2bk + 2bk−1 + bk−2 < · · · < 3bk + 2bk−1 + bk−2 − b1,

we have

P (Ak∪{bk+2bk−2, bk+bk−1−bk−2, bk+2bk−1−bk−2}) = [0, 4bk+4bk−1]\Bk,6,

where

Bk,6 =
{
b1, . . . , bk, 4bk + 4bk−1 − bi : i = 1, . . . , k

}
.

Write

Ak+1 = Ak ∪ {bk + 2bk−2, bk + bk−1 − bk−2, bk + 2bk−1 − bk−2}.

Since bk+1 = 3bk + 4bk−1, we have

P (Ak+1) = [0, bk+1 + bk] \ {b1, . . . , bk+1, bk+1 + bk − bi : i = 1, . . . , k − 1}.

This completes the proof of Theorem 1.1.

4. Proof of Corollary 1.2

Let Ak(k = 3, 4, . . .) be as in Lemma 2.3. Write

A =

∞⋃
k=4

Ak.

For any n ∈ P (A), we may assume that n ≤ bk−1 + 2bk−2 − bk−3 for some
k ≥ 4. For all i ≥ k, we have

A \Ai ⊆ [bk−1 + 2bk−2 − bk−3 + 1,+∞).

Thus, we have n ∈ P (Ak). By Theorem 1.1 we have

(4.1) n 6∈ {b1, . . . , bk, bk + bk−1 − bi : i = 1, . . . , k − 2}.
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Noting that n ≤ bk−1 + 2bk−2 − bk−3 < bk, we know that if n ∈ B, then
n ∈ {b1, . . . , bk}, which contradicts with (4.1). Hence, we have n 6∈ B. That is,
n ∈ N \B.

Conversely, if n′ ∈ N \B, then n′ 6∈ B, let n′ < bk′ , we have

n′ 6∈ {b1, . . . , bk′ , bk′ + bk′−1 − bi : i = 1, . . . , k′ − 2}.

By Theorem 1.1 we have n′ ∈ P (Ak′). So n′ ∈ P (A).
Hence P (A) = N \B.
This completes the proof of Corollary 1.2.

5. Proof of Theorem 1.4

By Theorem D, we know that if b1 ∈ {3, 5, 6, 9, 10}, then there is no a
sequence of positive integers A = {a1 < a2 < · · · } for which P (A) = N \ B.
Now, it is sufficient to consider a positive integers sequence B = {b1 < b2 < · · · }
with b1 ∈ {4, 7, 8} ∪ {b : b ≥ 11, b ∈ N}.

By Lemma 2.1, there exists A1 = {a1 < a2 < · · · < ak} ⊆ [1, b1 − 1] such
that P (A1) = [0, b1 − 1]. Then

ak+1 + P ({a1, . . . , ak}) = [ak+1, ak+1 + b1 − 1].

Assume that there exists a sequence A = {a1 < a2 < · · · } of positive integers
such that P (A) = N \B. Noting that b1 6∈ P (A) and b2 ∈ [b1 + 2, 2b1] ∪ [2b1 +
2,∞), we have ak+1 = b1 + 1. Hence

P ({a1, . . . , ak+1}) = [0, 2b1] \ {b1},

ak+2 + P ({a1, . . . , ak+1}) = [ak+2, ak+2 + 2b1] \ {ak+2 + b1}.
If ak+2 ≥ 2b1 + 2, then 2b1 + 1 6∈ P (A) and b2 = 2b1 + 1, a contradiction. So

(5.1) ak+2 ≤ 2b1 + 1,

(5.2) P ({a1, . . . , ak+2}) = [0, ak+2 + 2b1] \ {b1, ak+2 + b1}.

If b1 + 2 ≤ b2 ≤ 2b1, then by ak+2 > ak+1 = b1 + 1 and (5.2), we have

b2 ≥ ak+2 + b1 ≥ 2b1 + 2,

a contradiction.
Now we consider the following two cases:
Case 1. b2 = 3b1 + 3. If ak+2 ≥ b1 + 3, then b2 ∈ [0, ak+2 + 2b1]. Since

b2 6∈ P ({a1, . . . , ak+2}), we have b2 = ak+2 + b1. Thus

ak+2 = b2 − b1 = 2b1 + 3 > 2b1 + 1,

which contradicts with (5.1). Thus ak+2 = b1 + 2 and by (5.2) we have

P ({a1, . . . , ak+2}) = [0, 3b1 + 2] \ {b1, 2b1 + 2}.

Hence

ak+3 +P ({a1, . . . , ak+2}) = [ak+3, ak+3 + 3b1 + 2] \ {ak+3 + b1, ak+3 + 2b1 + 2}.
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If ak+3 ≥ 2b1 + 3, then 2b1 + 2 6∈ P (A), thus b2 = 2b1 + 2, a contradiction.
Hence ak+3 ≤ 2b1 + 2.

Since ak+3 > ak+2, we have ak+3 ≥ b1 + 3, thus b1 + ak+3 6= 2b1 + 2 and

P ({a1, . . . , ak+3}) = [0, ak+3 + 3b1 + 2] \ {b1, ak+3 + 2b1 + 2}.
Since b2 = 3b1 + 3 ∈ [0, ak+3 + 3b1 + 2] and b2 6∈ P ({a1, . . . , ak+3}), we have

b2 = 3b1 + 3 = ak+3 + 2b1 + 2 ≥ 3b1 + 5,

a contradiction.
Case 2. b2 = 3b1 + 2. Since ak+2 ≥ b1 + 2, then b2 ∈ [0, ak+2 + 2b1]. Since

b2 6∈ P ({a1, . . . , ak+2}), we have b2 = ak+2 + b1. Thus

ak+2 = b2 − b1 = 2b1 + 2 > 2b1 + 1,

which contradicts with (5.1).
This completes the proof of Theorem 1.4.
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