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Abstract. Let L be a commutative subspace lattice on a Hilbert space H and X and Y
be operators on H. Let

MX =

(
nX

i=1

EiXfi : n ∈ N, fi ∈ H and Ei ∈ L
)

and

MY =

(
nX

i=1

EiY fi : n ∈ N, fi ∈ H and Ei ∈ L
)

.

Then the following are equivalent.

(i) There is an operator A in AlgL such that AX = Y , Ag = 0 for all g in MX
⊥

,
A∗A = AA∗ and every E in L reduces A.

(ii) sup {K(E, f) : n ∈ N, fi ∈ H and Ei ∈ L} < ∞, MY ⊂ MX and there is an op-

erator T acting on H such that 〈EXf, Tg〉 = 〈EY f, Xg〉 and 〈ETf, Tg〉 = 〈EY f, Y g〉 for

all f, g in H and E in L, where K(E, f) = ‖Pn
i=1 EiY fi‖/‖

Pn
i=1 EiXfi‖.

1. Introduction

A commutative subspace lattice or CSLL is a strongly closed lattice of commu-
tative projections on a Hilbert space H. We assume that the projections 0 and I
lie in L. We usually identify projections and their ranges, so that it makes sense
to speak of an operator as leaving a projection invariant. AlgL is the algebra of all
bounded linear operators on H that leave invariant all the projections in L. If L is
CSL, then AlgL is called a CSL-algebra.

Let M be a subset of a Hilbert space H. Then M means the closure of M and
M⊥ the orthogonal complement of M. Let N be the set of all natural numbers
and let C be the set of all complex numbers. In this paper, we use the convention
0
0 = 0, when necessary.
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Let H be a Hilbert space and L be a commutative subspace lattice of orthogonal
projections on H containing 0 and I through this paper.

Theorem A ([3]). Let L be a commutative subspace lattice on H. Let X and Y
be operators on H. Then the following are equivalent.

(i) There is an operator A in AlgL such that AX = Y and every E in L reduces
A.

(ii) sup {K(E, f) : n ∈ N, fi ∈ H and Ei ∈ L} < ∞.

Theorem B ([4]). Let H be a Hilbert space and L be a subspace lattice on H. Let
X and Y be operators on H. Assume that the rangeX is dense in H. Then the
following statements are equivalent.

(i) There exists a normal operator A in AlgL such that AX = Y and every E
in L reduces A.

(ii) sup {K(E, f) : n ∈ N, fi ∈ H and Ei ∈ L} < ∞ and there is an operator.
T acting on H such that 〈Xf, Tg〉 = 〈Y f, Xg〉 and 〈Tf, Tg〉 = 〈Y f, Y g〉 for all

f and g in H.

In Theorem B, we investigated to find a necessary and sufficient condition for
normal interpolation problem in AlgL and we assumed the density of the range of
X. In this paper, we tried to delete the range dense condition.

2. Results

Let X and Y be operators acting on H. Let

MX =

{
n∑

i=1

EiXfi : n ∈ N, fi ∈ H and Ei ∈ L
}

and

MY =

{
n∑

i=1

EiY fi : n ∈ N, fi ∈ H and Ei ∈ L
}

.

Lemma 2.1. Let A, X and Y be operators on H. If Y = AX, Af = 0 for all f in
MX

⊥
and AE = EA for all E in L. Then the following are equivalent.

(i) MY ⊂MX .
(ii) For all f in MX

⊥
, A∗f is in MX

⊥
.

Proof. (i) ⇒ (ii). Let f be a vector in MX
⊥

. Then 〈A∗f, EXg〉 = 〈f, AEXg〉 =
〈f, EY g〉 = 0 for all g in H and E in L because MY ⊂MX . So A∗f is a vector in
MX

⊥
.

(ii) ⇒ (i). Let f be a vector in MX
⊥

. Then 0 = 〈A∗f, EXh〉 = 〈f, EY h〉 for
all E in L and h in H. So f is a vector in MY

⊥
. Hence MY ⊂MX . ¤
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Lemma 2.2. Let A, X and Y be operators on H. Assume that AX = Y , Af = 0
for all f in MX

⊥
, AE = EA for all E in L and A∗A = AA∗. If f is a vector in

MX
⊥
, then A∗f is a vector in MX

⊥
.

Proof. Let f be a vector in MX
⊥

and EXh = A∗g1 + g2 for E in L, where g2 is a
vector in range A∗

⊥
. Then

〈A∗f,EXh〉 = 〈A∗f,A∗g1 + g2〉 = 〈A∗f, A∗g1〉+ 〈A∗f, g2〉
= 〈A∗f,A∗g1〉 = 〈Af, Ag1〉 = 0.

So A∗f is a vector in MX
⊥

. ¤

Theorem 2.3. The following statements are equivalent.
(i) There is an operator A in AlgL such that Y = AX, Ag = 0 for all g in

MX
⊥
, AE = EA for all E in L and AA∗ = A∗A.

(ii) sup {K(E, f) : n ∈ N, fi ∈ H and Ei ∈ L} < ∞, MY ⊂ MX and there
is an operator T on H such that Tf ∈ MX , 〈EXf, Tg〉 = 〈EY f,Xg〉 and
〈ETf, Tg〉 = 〈EY f, Y g〉 for all f, g in H and E in L.

Proof. (i)⇒ (ii). If we assume that (i) holds, then by Theorem A, sup {K(E, f) : n ∈ N,
fi ∈ H and Ei ∈ L} < ∞. And by Lemmas 2.1 and 2.2, MY ⊂MX . Let A∗X =T .
Then

〈EXf, Tg〉 = 〈EXf, A∗Xg〉 = 〈AEXf,Xg〉 = 〈EY f, Xg〉
and

〈ETf, Tg〉 = 〈EA∗Xf,A∗Xg〈= 〈AEXf,AXg〉 = 〈EY f, Y g〉
for all f, g in H and E in L. Since

〈Tf, g〉 = 〈A∗Xf, g〉 = 〈Xf,Ag〉 = 〈Xf, 0〉 = 0

for all f in H and g in MX
⊥

, Tf ∈MX .
Conversely, by Theorem A, there is an operator A in L such that AX = Y , Ag =

0 for all g in MX
⊥

and every E in L reduces A. Since 〈EXf, Tg〉 = 〈EY f, Xg〉,
we have

〈A(
n∑

i=1

EiXfi), Xg〉 = 〈
n∑

i=1

AEiXfi, Xg〉 = 〈
n∑

i=1

EiY fi, Xg〉 = 〈
n∑

i=1

EiXfi, T g〉.

So 〈Ah,Xg〉 = 〈h, Tg〉 for all h in MX and g in H. Since 〈Ah, Xg〉 = 0 = 〈h, Tg〉
for h ∈ MX

⊥
and g in H, A∗X = T . Since 〈EY f, Y g〉 = 〈ETf, Tg〉 for all E in L

and f, g in H,

〈A(
n∑

i=1

EiXfi), Y g〉 = 〈
n∑

i=1

EiY fi, Y g〉 = 〈
n∑

i=1

EiTfi, T g〉

= 〈
n∑

i=1

EiA
∗Xfi, T g〉 = 〈

n∑

i=1

EiXfi, ATg〉,
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for all n ∈ N , g in H and Ei ∈ L. So 〈Af, Y g〉 = 〈f, ATg〉 for all f in MX and
g in H. Since 〈Af, Y g〉 = 0 and 〈f, ATg〉 = 〈A∗f, Tg〉 = 0 for all f in MX

⊥
and

g in H (A∗f ∈ MX
⊥

and Tg ∈ MX). Hence A∗Y = AT . Thus AA∗X = A∗AX.
So AA∗f = A∗Af for all f in MX . Since AE = EA, A∗E = EA∗ for all E in L.
Since A∗Ag = 0 = AA∗g for all g in MX

⊥
by Lemmas 2.1 and 2.2, AA∗ = A∗A.¤

Let X1, X2, · · · , Xn, Y1, Y2, · · · , Yn be operators acting onH (n is a fixed natural
number). Let

NX =

{
mi∑

k=1

l∑

i=1

Ek,iXifk,i : mi ∈ N, l ≤ n, fk,i ∈ H and Ek,i ∈ L
}

and

NY =

{
mi∑

k=1

l∑

i=1

Ek,iYifk,i : mi ∈ N, l ≤ n, fk,i ∈ H and Ek,i ∈ L
}

.

Theorem C ([3]). Let L be a commutative subspace lattice on H. Let X1, X2, · · · ,
Xn, Y1, Y2, · · · , Yn be operators on H. Assume that the range of one of the Xp’s is
dense in H (p = 1, 2, · · · , n). Let

K(E, f, m) =
‖∑mi

k=1

∑l
i=1 Ek,iYifk,i‖

‖∑mi

k=1

∑l
i=1 Ek,iXifk,i‖

.

Then the following statements are equivalent.

(i) There exists an operator A in AlgL such that AXi = Yi(i = 1, 2, · · · , n),
Ag = 0 for all g in NX

⊥
and every E in L reduces A.

(ii) sup {K(E, f, m) : mi ∈ N, l ≤ n, fk,i ∈ H and Ek,i ∈ L} < ∞.

Lemma 2.4. Let A, Xi and Yi be operators on H for i = 1, 2, · · · , n. If AXi =
Yi(i = 1, 2, · · · , n), Ag = 0 for all g in NX

⊥
and AE = EA for all E in L, then

the following are equivalent.
(i) NY ⊂ NX .
(ii) For all f in NX

⊥
, A∗f is a vector in NX

⊥
.

Proof. (i) ⇒ (ii). Let f be a vector in NX
⊥

. Then

〈A∗f, EXifi〉 = 〈f, AEiXifi〉 = 〈f, EiYifi〉 = 0

for all i = 1, 2, · · · , n and for all Ei in L because NY ⊂ NX . So A∗f is a vector in
NX

⊥
.
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(ii) ⇒ (i). Let f be a vector in NX
⊥

. Then

0 = 〈A∗f, EiXihi〉 = 〈f,AEiXihi〉 = 〈f,EiYihi〉

for all Ei in L, hi in H and i = 1, 2, · · · , n. So f is a vector in NY
⊥

. Hence
NY ⊂ NX . ¤

Lemma 2.5. Let A, Xi and Yi be operators on H for i = 1, 2, · · · , n. Assume that
AXi = Yi (i = 1, 2, · · · , n), Ag = 0 for all g in NX

⊥
, AE = EA for all E in L and

A∗A = AA∗. Then A∗f is a vector in NX
⊥

for all f in NX
⊥
.

Proof. Let f be a vector in NX
⊥

and EiXifi = A∗gi1 + gi2 for Ei in L and fi in
H, where gi2 is a vector in range A∗

⊥
(i = 1, 2, · · · , n). Then

〈A∗f, EiXifi〉 = 〈A∗f, A∗gi1 + gi2〉 = 〈A∗f, A∗gi1〉+ 〈A∗f, gi2〉
= 〈A∗f, A∗gi1〉 = 〈Af, Agi1〉 = 0.

So A∗f is a vector in NX
⊥

. ¤

Theorem 2.6. The following are equivalent.

(i) There is an operator A in AlgL such that Yi = AXi (i = 1, 2, · · · , n), Ag = 0
for all g in NX

⊥
, AE = EA for all E in L and AA∗ = A∗A.

(ii) sup {K(E, f, m) : mi∈N, l≤n, fk,i∈H and Ek,i∈L}<∞, NY ⊂ NX and
there are operators Tp on H such that

〈EqXqfq, Tpgp〉 = 〈EqYqfq, Xpgp〉, 〈EqTqfq, Tpgp〉 = 〈EqYqfq, Ypgp〉

and Tpfp ∈ NX for fp, gp in H, Eq in L and p, q = 1, 2, · · · , n.

Proof. (i)⇒ (ii). By Theorem C, sup {K(E, f, m) : mi∈N, l≤n, fk,i∈H and Ek,i∈L}
<∞. By Lemmas 2.4 and 2.5, NY ⊂ NX . Let A∗Xp = Tp (p = 1, 2, · · · , n). Then

〈EqXqfq, Tpgp〉 = 〈EqXqfq, A
∗Xpgp〉

= 〈AEqXqfq, Xpgp〉
= 〈EqYqfq, Xpgp〉

and

〈EqTqfq, Tpgp〉 = 〈EqA
∗Xqfq, A

∗Xpgp〉
= 〈AEqXqfq, AXpgp〉
= 〈EqYqfq, Ypgp〉.

Since 〈Tpfp, g〉 = 〈A∗Xpfp, g〉 = 〈Xpfp, Ag〉 = 〈Xpfp, 0〉 = 0 for all fp in H and g

in NX
⊥

, Tpfp ∈ NX .
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(ii) ⇒ (i). By Theorem C, there is an operator A in AlgL such that AXi = Yi

(i = 1, 2, · · · , n), Af = 0 for all f in NX
⊥

and every E in L reduces A. Since
〈EqXqfq, Tpgp〉 = 〈EqYqfq, Xpgp〉 for all Eq in L and all p, q = 1, 2, · · · , n ,

〈A(
mi∑

k=1

l∑

i=1

Ek,iXifk,i), Xpgp〉 = 〈
mi∑

k=1

l∑

i=1

Ek,iYifk,i, Xpgp〉

= 〈
mi∑

k=1

l∑

i=1

Ek,iXifk,i, Tpgp〉,

mi ∈ N, l ≤ n, fk,i ∈ H, Ek,i ∈ L and p = 1, 2, · · · , n. So 〈Ah,Xpgp〉 = 〈h, Tpgp〉
for all h in NX , gp in H and p = 1, 2, · · · , n. Since 〈Ah,Xpgp〉 = 0 = 〈h, Tpgp〉 for
all h in NX

⊥
, gp in H and p = 1, 2, · · · , n, A∗Xp = Tp. Since 〈EqYqfq, Ypgp〉 =

〈EqTqfq, Tpgp〉, Eq ∈ L, fq, gq ∈ H and p, q = 1, 2, · · · , n,

〈A(
mi∑

k=1

l∑

i=1

Ek,iXifk,i), Ypgp〉 = 〈
mi∑

k=1

l∑

i=1

Ek,iYifk,i, Ypgp〉

= 〈
mi∑

k=1

l∑

i=1

Ek,iTifk,i, Tpgp〉

= 〈
mi∑

k=1

l∑

i=1

Ek,iA
∗Xifk,i, Tpgp〉

= 〈
mi∑

k=1

l∑

i=1

Ek,iXifk,i, ATpgp〉.

So 〈Af, Ypgp〉 = 〈f, ATpgp〉 for all f in NX and gp in H(p = 1, 2, · · · , n). Since
〈Af, Ypgp〉 = 0 and 〈f, ATpgp〉 = 〈A∗f, Tpgp〉 = 0 for all f in NX

⊥
, gp in H and

p = 1, 2, · · · , n by Lemmas 2.4 and 2.5. So A∗Yp = ATp(p = 1, 2, · · · , n). Thus
A∗AXp = AA∗Xp(p = 1, 2, · · · , n). Hence A∗Af = AA∗f for all f in NX . Since
A∗Ag = 0 = AA∗g for all g in NX

⊥
by Lemmas 2.4 and 2.5, A∗A = AA∗. ¤

Let {Xn} and {Yn} be two infinite sequences of operators on H. Let

KX =

{
mi∑

k=1

l∑

i=1

Ek,iXifk,i : mi, l ∈ N, fk,i ∈ H and Ek,i ∈ L
}

and

KY =

{
mi∑

k=1

l∑

i=1

Ek,iYifk,i : mi, l ∈ N, fk,i ∈ H and Ek,i ∈ L
}

.

With the similar proof as Lemmas 2.4, 2.5 and Theorem 2.6, we can get the
following Theorem.
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Theorem 2.7. The following statements are equivalent.
(i) There is an operator A in AlgL such that AXn = Yn (n = 1, 2, · · · ), Ag = 0

for all g in KX
⊥
, every E in L reduces A and AA∗ = A∗A.

(ii) sup {K(E, f, m) : mi, l ∈ N, fk,i ∈ H and Ek,i ∈ L} < ∞, KY ⊂ KX

and there are operators Tn on H (n = 1, 2, · · · ) such that 〈EqXqfq, Tpgp〉 =
〈EqYqfq, Xpgp〉, 〈EqTqfq, Tpgp〉 = 〈EqYqfq, Ypgp〉 and Tpfp ∈ NX for fp, gp in
H, Eq in L and p, q = 1, 2, · · · .
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