KYUNGPOOK Math. J. 45(2005), 293-299

Normal Interpolation on AX = Y in CSL-algebra Alg \mathcal{L}

Young Soo Jo

Department of Mathematics, Keimyung University, Daegu 704-701, Korea e-mail: ysjo@kmu.ac.kr

JOO HO KANG

Department of Mathematics, Daegu University, Daegu 712-714, Korea e-mail: jhkang@daegu.ac.kr

ABSTRACT. Let \mathcal{L} be a commutative subspace lattice on a Hilbert space \mathcal{H} and X and Y be operators on \mathcal{H} . Let

$$\mathcal{M}_X = \left\{ \sum_{i=1}^n E_i X f_i : n \in \mathbb{N}, \ f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L} \right\}$$

and

$$\mathcal{M}_Y = \left\{ \sum_{i=1}^n E_i Y f_i : n \in \mathbb{N}, \ f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L} \right\}.$$

Then the following are equivalent.

(i) There is an operator A in Alg \mathcal{L} such that AX = Y, Ag = 0 for all g in $\overline{\mathcal{M}_X}^{\perp}$, $A^*A = AA^*$ and every E in \mathcal{L} reduces A.

(ii) $\sup \{K(E, f) : n \in \mathbb{N}, f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L}\} < \infty, \overline{\mathcal{M}_Y} \subset \overline{\mathcal{M}_X} \text{ and there is an operator } T \text{ acting on } \mathcal{H} \text{ such that } \langle EXf, Tg \rangle = \langle EYf, Xg \rangle \text{ and } \langle ETf, Tg \rangle = \langle EYf, Yg \rangle \text{ for all } f, g \text{ in } \mathcal{H} \text{ and } E \text{ in } \mathcal{L}, \text{ where } K(E, f) = \|\sum_{i=1}^n E_iYf_i\| / \|\sum_{i=1}^n E_iXf_i\|.$

1. Introduction

A commutative subspace lattice or $\text{CSL}\mathcal{L}$ is a strongly closed lattice of commutative projections on a Hilbert space \mathcal{H} . We assume that the projections 0 and Ilie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . If \mathcal{L} is CSL, then Alg \mathcal{L} is called a CSL-algebra.

Let \mathcal{M} be a subset of a Hilbert space \mathcal{H} . Then $\overline{\mathcal{M}}$ means the closure of \mathcal{M} and \mathcal{M}^{\perp} the orthogonal complement of \mathcal{M} . Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

Received August 1, 2004, and, in revised form, April 13, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 47L35.

Key words and phrases: interpolation problem, subspace lattice, normal interpolation problem, CSL-algebra, Alg \mathcal{L} .

Let \mathcal{H} be a Hilbert space and \mathcal{L} be a commutative subspace lattice of orthogonal projections on \mathcal{H} containing 0 and I through this paper.

Theorem A ([3]). Let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let X and Y be operators on \mathcal{H} . Then the following are equivalent.

(i) There is an operator A in Alg \mathcal{L} such that AX = Y and every E in \mathcal{L} reduces A.

(ii) sup $\{K(E, f) : n \in \mathbb{N}, f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L}\} < \infty$.

Theorem B ([4]). Let \mathcal{H} be a Hilbert space and \mathcal{L} be a subspace lattice on \mathcal{H} . Let X and Y be operators on \mathcal{H} . Assume that the range X is dense in \mathcal{H} . Then the following statements are equivalent.

(i) There exists a normal operator A in Alg \mathcal{L} such that AX = Y and every E in \mathcal{L} reduces A.

(ii) $\sup \{K(E, f) : n \in \mathbb{N}, f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L}\} < \infty$ and there is an operator. $T \text{ acting on } \mathcal{H} \text{ such that } \langle Xf, Tg \rangle = \langle Yf, Xg \rangle \text{ and } \langle Tf, Tg \rangle = \langle Yf, Yg \rangle \text{ for all } f \text{ and } g \text{ in } \mathcal{H}.$

In Theorem B, we investigated to find a necessary and sufficient condition for normal interpolation problem in Alg \mathcal{L} and we assumed the density of the range of X. In this paper, we tried to delete the range dense condition.

2. Results

Let X and Y be operators acting on \mathcal{H} . Let

$$\mathcal{M}_X = \left\{ \sum_{i=1}^n E_i X f_i : n \in \mathbb{N}, f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L} \right\}$$

and

$$\mathcal{M}_Y = \left\{ \sum_{i=1}^n E_i Y f_i : n \in \mathbb{N}, f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L} \right\}.$$

Lemma 2.1. Let A, X and Y be operators on \mathcal{H} . If Y = AX, Af = 0 for all f in $\overline{\mathcal{M}_X}^{\perp}$ and AE = EA for all E in \mathcal{L} . Then the following are equivalent.

(i) $\overline{\mathcal{M}_Y} \subset \overline{\mathcal{M}_X}$. (ii) For all f in $\overline{\mathcal{M}_X}^{\perp}$, $A^* f$ is in $\overline{\mathcal{M}_X}^{\perp}$.

Proof. (i) \Rightarrow (ii). Let f be a vector in $\overline{\mathcal{M}_X}^{\perp}$. Then $\langle A^*f, EXg \rangle = \langle f, AEXg \rangle = \langle f, EYg \rangle = 0$ for all g in \mathcal{H} and E in \mathcal{L} because $\overline{\mathcal{M}_Y} \subset \overline{\mathcal{M}_X}$. So A^*f is a vector in $\overline{\mathcal{M}_X}^{\perp}$.

(ii) \Rightarrow (i). Let f be a vector in $\overline{\mathcal{M}_X}^{\perp}$. Then $0 = \langle A^*f, EXh \rangle = \langle f, EYh \rangle$ for all E in \mathcal{L} and h in \mathcal{H} . So f is a vector in $\overline{\mathcal{M}_Y}^{\perp}$. Hence $\overline{\mathcal{M}_Y} \subset \overline{\mathcal{M}_X}$. \Box

294

Lemma 2.2. Let A, X and Y be operators on \mathcal{H} . Assume that AX = Y, Af = 0 for all f in $\overline{\mathcal{M}_X}^{\perp}$, AE = EA for all E in \mathcal{L} and $A^*A = AA^*$. If f is a vector in $\overline{\mathcal{M}_X}^{\perp}$, then A^*f is a vector in $\overline{\mathcal{M}_X}^{\perp}$.

Proof. Let f be a vector in $\overline{\mathcal{M}_X}^{\perp}$ and $EXh = A^*g_1 + g_2$ for E in \mathcal{L} , where g_2 is a vector in range A^{*}^{\perp} . Then

$$\begin{array}{rcl} \langle A^*f, EXh \rangle & = & \langle A^*f, A^*g_1 + g_2 \rangle & = & \langle A^*f, A^*g_1 \rangle + \langle A^*f, g_2 \rangle \\ \\ & = & \langle A^*f, A^*g_1 \rangle = \langle Af, Ag_1 \rangle & = & 0. \end{array}$$

So A^*f is a vector in $\overline{\mathcal{M}_X}^{\perp}$.

Theorem 2.3. The following statements are equivalent.

(i) There is an operator A in Alg \mathcal{L} such that Y = AX, Ag = 0 for all g in $\overline{\mathcal{M}_X}^{\perp}$, AE = EA for all E in \mathcal{L} and $AA^* = A^*A$.

(ii) sup $\{K(E, f) : n \in \mathbb{N}, f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L}\} < \infty, \overline{\mathcal{M}_Y} \subset \overline{\mathcal{M}_X} \text{ and there}$ is an operator T on \mathcal{H} such that $Tf \in \overline{\mathcal{M}_X}, \langle EXf, Tg \rangle = \langle EYf, Xg \rangle$ and $\langle ETf, Tg \rangle = \langle EYf, Yg \rangle$ for all f, g in \mathcal{H} and E in \mathcal{L} .

Proof. (i) \Rightarrow (ii). If we assume that (i) holds, then by Theorem A, sup $\{K(E, f) : n \in \mathbb{N}, f_i \in \mathcal{H} \text{ and } E_i \in \mathcal{L}\} < \infty$. And by Lemmas 2.1 and 2.2, $\overline{\mathcal{M}_Y} \subset \overline{\mathcal{M}_X}$. Let $A^*X = T$. Then

$$\langle EXf, Tg \rangle = \langle EXf, A^*Xg \rangle = \langle AEXf, Xg \rangle = \langle EYf, Xg \rangle$$

and

$$ETf, Tg \rangle = \langle EA^*Xf, A^*Xg \langle = \langle AEXf, AXg \rangle = \langle EYf, Yg \rangle$$

for all f, g in \mathcal{H} and E in \mathcal{L} . Since

$$\langle Tf,g\rangle = \langle A^*Xf,g\rangle = \langle Xf,Ag\rangle = \langle Xf,0\rangle = 0$$

for all f in \mathcal{H} and g in $\overline{\mathcal{M}_X}^{\perp}$, $Tf \in \overline{\mathcal{M}_X}$.

Conversely, by Theorem A, there is an operator A in \mathcal{L} such that AX = Y, Ag = 0 for all g in $\overline{\mathcal{M}_X}^{\perp}$ and every E in \mathcal{L} reduces A. Since $\langle EXf, Tg \rangle = \langle EYf, Xg \rangle$, we have

$$\langle A(\sum_{i=1}^{n} E_i X f_i), Xg \rangle = \langle \sum_{i=1}^{n} A E_i X f_i, Xg \rangle = \langle \sum_{i=1}^{n} E_i Y f_i, Xg \rangle = \langle \sum_{i=1}^{n} E_i X f_i, Tg \rangle.$$

So $\langle Ah, Xg \rangle = \langle h, Tg \rangle$ for all h in $\overline{\mathcal{M}_X}$ and g in \mathcal{H} . Since $\langle Ah, Xg \rangle = 0 = \langle h, Tg \rangle$ for $h \in \overline{\mathcal{M}_X}^{\perp}$ and g in \mathcal{H} , $A^*X = T$. Since $\langle EYf, Yg \rangle = \langle ETf, Tg \rangle$ for all E in \mathcal{L} and f, g in \mathcal{H} ,

$$\langle A(\sum_{i=1}^{n} E_{i}Xf_{i}), Yg \rangle = \langle \sum_{i=1}^{n} E_{i}Yf_{i}, Yg \rangle = \langle \sum_{i=1}^{n} E_{i}Tf_{i}, Tg \rangle$$

$$= \langle \sum_{i=1}^{n} E_{i}A^{*}Xf_{i}, Tg \rangle = \langle \sum_{i=1}^{n} E_{i}Xf_{i}, ATg \rangle$$

for all $n \in N$, g in \mathcal{H} and $E_i \in \mathcal{L}$. So $\langle Af, Yg \rangle = \langle f, ATg \rangle$ for all f in $\overline{\mathcal{M}_X}$ and g in \mathcal{H} . Since $\langle Af, Yg \rangle = 0$ and $\langle f, ATg \rangle = \langle A^*f, Tg \rangle = 0$ for all f in $\overline{\mathcal{M}_X}^{\perp}$ and g in \mathcal{H} ($A^*f \in \overline{\mathcal{M}_X}^{\perp}$ and $Tg \in \overline{\mathcal{M}_X}$). Hence $A^*Y = AT$. Thus $AA^*X = A^*AX$. So $AA^*f = A^*Af$ for all f in $\overline{\mathcal{M}_X}$. Since AE = EA, $A^*E = EA^*$ for all E in \mathcal{L} . Since $A^*Ag = 0 = AA^*g$ for all g in $\overline{\mathcal{M}_X}^{\perp}$ by Lemmas 2.1 and 2.2, $AA^* = A^*A$.

Let $X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n$ be operators acting on \mathcal{H} (*n* is a fixed natural number). Let

$$\mathcal{N}_X = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} X_i f_{k,i} : m_i \in \mathbb{N}, \ l \le n, \ f_{k,i} \in \mathcal{H} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

and

$$\mathcal{N}_Y = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} Y_i f_{k,i} : m_i \in \mathbb{N}, \ l \le n, \ f_{k,i} \in \mathcal{H} \text{ and } E_{k,i} \in \mathcal{L} \right\}.$$

Theorem C ([3]). Let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $X_1, X_2, \cdots, X_n, Y_1, Y_2, \cdots, Y_n$ be operators on \mathcal{H} . Assume that the range of one of the X_p 's is dense in \mathcal{H} $(p = 1, 2, \cdots, n)$. Let

$$K(E, f, m) = \frac{\left\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} E_{k,i} Y_i f_{k,i}\right\|}{\left\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} E_{k,i} X_i f_{k,i}\right\|}$$

Then the following statements are equivalent.

- (i) There exists an operator A in Alg \mathcal{L} such that $AX_i = Y_i (i = 1, 2, \cdots, n)$, Ag = 0 for all g in $\overline{\mathcal{N}_X}^{\perp}$ and every E in \mathcal{L} reduces A.
- (ii) $\sup \{K(E, f, m) : m_i \in \mathbb{N}, l \leq n, f_{k,i} \in \mathcal{H} and E_{k,i} \in \mathcal{L}\} < \infty.$

Lemma 2.4. Let A, X_i and Y_i be operators on \mathcal{H} for $i = 1, 2, \dots, n$. If $AX_i = Y_i (i = 1, 2, \dots, n)$, Ag = 0 for all g in $\overline{\mathcal{N}_X}^{\perp}$ and AE = EA for all E in \mathcal{L} , then the following are equivalent.

- (i) $\overline{\mathcal{N}_Y} \subset \overline{\mathcal{N}_X}$.
- (ii) For all f in $\overline{\mathcal{N}_X}^{\perp}$, A^*f is a vector in $\overline{\mathcal{N}_X}^{\perp}$.

Proof. (i) \Rightarrow (ii). Let f be a vector in $\overline{\mathcal{N}_X}^{\perp}$. Then

$$\langle A^*f, EX_if_i \rangle = \langle f, AE_iX_if_i \rangle = \langle f, E_iY_if_i \rangle = 0$$

for all $i = 1, 2, \dots, n$ and for all E_i in \mathcal{L} because $\overline{\mathcal{N}_Y} \subset \overline{\mathcal{N}_X}$. So A^*f is a vector in $\overline{\mathcal{N}_X}^{\perp}$.

Normal Interpolation on AX=Y in CSL-algebra $Alg\mathcal{L}$

(ii) \Rightarrow (i). Let f be a vector in $\overline{\mathcal{N}_X}^{\perp}$. Then

$$0 = \langle A^* f, E_i X_i h_i \rangle = \langle f, A E_i X_i h_i \rangle = \langle f, E_i Y_i h_i \rangle$$

for all $\underline{E_i}$ in \mathcal{L} , h_i in \mathcal{H} and $i = 1, 2, \cdots, n$. So f is a vector in $\overline{\mathcal{N}_Y}^{\perp}$. Hence $\overline{\mathcal{N}_Y} \subset \overline{\mathcal{N}_X}$.

Lemma 2.5. Let A, X_i and Y_i be operators on \mathcal{H} for $i = 1, 2, \dots, n$. Assume that $AX_i = Y_i$ $(i = 1, 2, \dots, n)$, Ag = 0 for all g in $\overline{\mathcal{N}_X}^{\perp}$, AE = EA for all E in \mathcal{L} and $A^*A = AA^*$. Then A^*f is a vector in $\overline{\mathcal{N}_X}^{\perp}$ for all f in $\overline{\mathcal{N}_X}^{\perp}$.

Proof. Let f be a vector in $\overline{\mathcal{N}_X}^{\perp}$ and $E_i X_i f_i = A^* g_{i_1} + g_{i_2}$ for E_i in \mathcal{L} and f_i in \mathcal{H} , where g_{i_2} is a vector in $\overline{\text{range } A^*}^{\perp}$ $(i = 1, 2, \cdots, n)$. Then

$$\begin{split} \langle A^*f, E_i X_i f_i \rangle &= \langle A^*f, A^*g_{i_1} + g_{i_2} \rangle = \langle A^*f, A^*g_{i_1} \rangle + \langle A^*f, g_{i_2} \rangle \\ &= \langle A^*f, A^*g_{i_1} \rangle = \langle Af, Ag_{i_1} \rangle = 0. \end{split}$$

So A^*f is a vector in $\overline{\mathcal{N}_X}^{\perp}$.

Theorem 2.6. The following are equivalent.

(i) There is an operator A in Alg \mathcal{L} such that $Y_i = AX_i$ $(i = 1, 2, \dots, n)$, Ag = 0 for all g in $\overline{\mathcal{N}_X}^{\perp}$, AE = EA for all E in \mathcal{L} and $AA^* = A^*A$.

(ii) sup $\{K(E, f, m) : m_i \in \mathbb{N}, l \leq n, f_{k,i} \in \mathcal{H} \text{ and } E_{k,i} \in \mathcal{L}\} < \infty, \overline{\mathcal{N}_Y} \subset \overline{\mathcal{N}_X} \text{ and } there are operators <math>T_p$ on \mathcal{H} such that

$$\langle E_q X_q f_q, T_p g_p \rangle = \langle E_q Y_q f_q, X_p g_p \rangle, \quad \langle E_q T_q f_q, T_p g_p \rangle = \langle E_q Y_q f_q, Y_p g_p \rangle$$

and $T_p f_p \in \overline{\mathcal{N}_X}$ for f_p , g_p in \mathcal{H} , E_q in \mathcal{L} and p, $q = 1, 2, \cdots, n$. *Proof.* (i) \Rightarrow (ii). By Theorem C, $\sup \{K(E, f, m) : m_i \in \mathbb{N}, l \le n, f_{k,i} \in \mathcal{H} \text{ and } E_{k,i} \in \mathcal{L}\}$ $<\infty$. By Lemmas 2.4 and 2.5, $\overline{\mathcal{N}_Y} \subset \overline{\mathcal{N}_X}$. Let $A^*X_p = T_p$ $(p = 1, 2, \cdots, n)$. Then

$$\begin{aligned} \langle E_q X_q f_q, T_p g_p \rangle &= \langle E_q X_q f_q, A^* X_p g_p \rangle \\ &= \langle A E_q X_q f_q, X_p g_p \rangle \\ &= \langle E_q Y_q f_q, X_p g_p \rangle \end{aligned}$$

and

$$\begin{split} \langle E_q T_q f_q, T_p g_p \rangle &= \langle E_q A^* X_q f_q, A^* X_p g_p \rangle \\ &= \langle A E_q X_q f_q, A X_p g_p \rangle \\ &= \langle E_q Y_q f_q, Y_p g_p \rangle. \end{split}$$

Since $\langle T_p f_p, g \rangle = \langle A^* X_p f_p, g \rangle = \langle X_p f_p, Ag \rangle = \langle X_p f_p, 0 \rangle = 0$ for all f_p in \mathcal{H} and g in $\overline{\mathcal{N}_X}^{\perp}$, $T_p f_p \in \overline{\mathcal{N}_X}$.

297

(ii) \Rightarrow (i). By Theorem C, there is an operator A in Alg \mathcal{L} such that $AX_i = Y_i$ ($i = 1, 2, \dots, n$), Af = 0 for all f in $\overline{\mathcal{N}_X}^{\perp}$ and every E in \mathcal{L} reduces A. Since $\langle E_q X_q f_q, T_p g_p \rangle = \langle E_q Y_q f_q, X_p g_p \rangle$ for all E_q in \mathcal{L} and all $p, q = 1, 2, \dots, n$,

$$\begin{aligned} \langle A(\sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} X_i f_{k,i}), X_p g_p \rangle &= \langle \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} Y_i f_{k,i}, X_p g_p \rangle \\ &= \langle \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} X_i f_{k,i}, T_p g_p \rangle, \end{aligned}$$

$$\begin{split} m_i \in \mathbb{N}, \ l \leq n, \ f_{k,i} \in \mathcal{H}, \ E_{k,i} \in \mathcal{L} \ \text{and} \ p = 1, 2, \cdots, n. \ \text{So} \ \langle Ah, X_p g_p \rangle &= \langle h, T_p g_p \rangle \\ \text{for all } h \ \text{in} \ \overline{\mathcal{N}_X}, \ g_p \ \text{in} \ \mathcal{H} \ \text{and} \ p = 1, 2, \cdots, n. \ \text{Since} \ \langle Ah, X_p g_p \rangle &= 0 = \langle h, T_p g_p \rangle \\ \text{for all } h \ \text{in} \ \overline{\mathcal{N}_X}^{\perp}, \ g_p \ \text{in} \ \mathcal{H} \ \text{and} \ p = 1, 2, \cdots, n, \ A^* X_p = T_p. \ \text{Since} \ \langle E_q Y_q f_q, Y_p g_p \rangle \\ &= \langle E_q T_q f_q, T_p g_p \rangle, \ E_q \in \mathcal{L}, \ f_q, \ g_q \in \mathcal{H} \ \text{and} \ p, \ q = 1, 2, \cdots, n, \end{split}$$

$$\begin{split} \langle A(\sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} X_i f_{k,i}), Y_p g_p \rangle &= \langle \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} Y_i f_{k,i}, Y_p g_p \rangle \\ &= \langle \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} T_i f_{k,i}, T_p g_p \rangle \\ &= \langle \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} A^* X_i f_{k,i}, T_p g_p \rangle \\ &= \langle \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} X_i f_{k,i}, A T_p g_p \rangle. \end{split}$$

So $\langle Af, Y_p g_p \rangle = \langle f, AT_p g_p \rangle$ for all f in $\overline{\mathcal{N}_X}$ and g_p in $\mathcal{H}(p = 1, 2, \cdots, n)$. Since $\langle Af, Y_p g_p \rangle = 0$ and $\langle f, AT_p g_p \rangle = \langle A^* f, T_p g_p \rangle = 0$ for all f in $\overline{\mathcal{N}_X}^{\perp}$, g_p in \mathcal{H} and $p = 1, 2, \cdots, n$ by Lemmas 2.4 and 2.5. So $A^* Y_p = AT_p(p = 1, 2, \cdots, n)$. Thus $A^* AX_p = AA^* X_p(p = 1, 2, \cdots, n)$. Hence $A^* Af = AA^* f$ for all f in $\overline{\mathcal{N}_X}$. Since $A^* Ag = 0 = AA^* g$ for all g in $\overline{\mathcal{N}_X}^{\perp}$ by Lemmas 2.4 and 2.5, $A^* A = AA^*$.

Let $\{X_n\}$ and $\{Y_n\}$ be two infinite sequences of operators on \mathcal{H} . Let

$$\mathcal{K}_X = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^l E_{k,i} X_i f_{k,i} : m_i, l \in \mathbb{N}, \ f_{k,i} \in \mathcal{H} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

and

$$\mathcal{K}_Y = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} E_{k,i} Y_i f_{k,i} : m_i, l \in \mathbb{N}, \ f_{k,i} \in \mathcal{H} \text{ and } E_{k,i} \in \mathcal{L} \right\}.$$

With the similar proof as Lemmas 2.4, 2.5 and Theorem 2.6, we can get the following Theorem.

Theorem 2.7. The following statements are equivalent.

(i) There is an operator A in AlgL such that $AX_n = Y_n$ $(n = 1, 2, \dots)$, Ag = 0

for all g in $\overline{\mathcal{K}_X}^{\perp}$, every E in \mathcal{L} reduces A and $AA^* = A^*A$. (ii) $\sup \{K(E, f, m) : m_i, l \in \mathbb{N}, f_{k,i} \in \mathcal{H} \text{ and } E_{k,i} \in \mathcal{L}\} < \infty, \overline{\mathcal{K}_Y} \subset \overline{\mathcal{K}_X}$ and there are operators T_n on \mathcal{H} $(n = 1, 2, \cdots)$ such that $\langle E_q X_q f_q, T_p g_p \rangle =$ $\langle E_q Y_q f_q, X_p g_p \rangle$, $\langle E_q T_q f_q, T_p g_p \rangle = \langle E_q Y_q f_q, Y_p g_p \rangle$ and $T_p f_p \in \overline{\mathcal{N}_X}$ for f_p , g_p in \mathcal{H} , E_q in \mathcal{L} and p, $q = 1, 2, \cdots$.

References

- [1] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413-415.
- [2] A. Hopenwasser, Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math., **33(4)**(1989), 657-672.
- [3] Y. S. Jo and J. H. Kang, Interpolation problems in $Alg\mathcal{L}$, to appear in the J. App. Math. and Computing.
- [4] Y. S. Jo and J. H. Kang, Normal interpolation problems in $Alg\mathcal{L}$, to appear in Comm. of KMS.
- [5] E. Katsoulis, R. L. Moore and T. T. Trent, Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory, 29(1993), 115-123.