## Normal Interpolation on $A X=Y$ in CSL-algebra $\operatorname{Alg} \mathcal{L}$

Young Soo Jo
Department of Mathematics, Keimyung University, Daegu 704-701, Korea
e-mail: ysjo@kmu.ac.kr
Joo Ho Kang
Department of Mathematics, Daegu University, Daegu 712-714, Korea
e-mail: jhkang@daegu.ac.kr
Abstract. Let $\mathcal{L}$ be a commutative subspace lattice on a Hilbert space $\mathcal{H}$ and $X$ and $Y$ be operators on $\mathcal{H}$. Let

$$
\mathcal{M}_{X}=\left\{\sum_{i=1}^{n} E_{i} X f_{i}: n \in \mathbb{N}, f_{i} \in \mathcal{H} \text { and } E_{i} \in \mathcal{L}\right\}
$$

and

$$
\mathcal{M}_{Y}=\left\{\sum_{i=1}^{n} E_{i} Y f_{i}: n \in \mathbb{N}, f_{i} \in \mathcal{H} \text { and } E_{i} \in \mathcal{L}\right\}
$$

Then the following are equivalent.
(i) There is an operator $A$ in $\operatorname{Alg} \mathcal{L}$ such that $A X=Y, A g=0$ for all $g$ in ${\overline{\mathcal{M}_{X}}}^{\perp}$, $A^{*} A=A A^{*}$ and every $E$ in $\mathcal{L}$ reduces $A$.
(ii) $\sup \left\{K(E, f): n \in \mathbb{N}, f_{i} \in \mathcal{H}\right.$ and $\left.E_{i} \in \mathcal{L}\right\}<\infty, \overline{\mathcal{M}_{Y}} \subset \overline{\mathcal{M}_{X}}$ and there is an operator $T$ acting on $\mathcal{H}$ such that $\langle E X f, T g\rangle=\langle E Y f, X g\rangle$ and $\langle E T f, T g\rangle=\langle E Y f, Y g\rangle$ for all $f, g$ in $\mathcal{H}$ and $E$ in $\mathcal{L}$, where $K(E, f)=\left\|\sum_{i=1}^{n} E_{i} Y f_{i}\right\| /\left\|\sum_{i=1}^{n} E_{i} X f_{i}\right\|$.

## 1. Introduction

A commutative subspace lattice or CSL $\mathcal{L}$ is a strongly closed lattice of commutative projections on a Hilbert space $\mathcal{H}$. We assume that the projections 0 and $I$ lie in $\mathcal{L}$. We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. $\operatorname{Alg} \mathcal{L}$ is the algebra of all bounded linear operators on $\mathcal{H}$ that leave invariant all the projections in $\mathcal{L}$. If $\mathcal{L}$ is CSL, then $\operatorname{Alg} \mathcal{L}$ is called a CSL-algebra.

Let $\mathcal{M}$ be a subset of a Hilbert space $\mathcal{H}$. Then $\overline{\mathcal{M}}$ means the closure of $\mathcal{M}$ and $\mathcal{M}^{\perp}$ the orthogonal complement of $\mathcal{M}$. Let $\mathbb{N}$ be the set of all natural numbers and let $\mathbb{C}$ be the set of all complex numbers. In this paper, we use the convention $\frac{0}{0}=0$, when necessary.

Received August 1, 2004, and, in revised form, April 13, 2005.
2000 Mathematics Subject Classification: 47L35.
Key words and phrases: interpolation problem, subspace lattice, normal interpolation problem, CSL-algebra, $\operatorname{Alg} \mathcal{L}$.

Let $\mathcal{H}$ be a Hilbert space and $\mathcal{L}$ be a commutative subspace lattice of orthogonal projections on $\mathcal{H}$ containing 0 and $I$ through this paper.

Theorem A ([3]). Let $\mathcal{L}$ be a commutative subspace lattice on $\mathcal{H}$. Let $X$ and $Y$ be operators on $\mathcal{H}$. Then the following are equivalent.
(i) There is an operator $A$ in $\operatorname{Alg} \mathcal{L}$ such that $A X=Y$ and every $E$ in $\mathcal{L}$ reduces A.
(ii) $\sup \left\{K(E, f): n \in \mathbb{N}, f_{i} \in \mathcal{H}\right.$ and $\left.E_{i} \in \mathcal{L}\right\}<\infty$.

Theorem B ([4]). Let $\mathcal{H}$ be a Hilbert space and $\mathcal{L}$ be a subspace lattice on $\mathcal{H}$. Let $X$ and $Y$ be operators on $\mathcal{H}$. Assume that the range $X$ is dense in $\mathcal{H}$. Then the following statements are equivalent.
(i) There exists a normal operator $A$ in $\operatorname{Alg} \mathcal{L}$ such that $A X=Y$ and every $E$ in $\mathcal{L}$ reduces $A$.
(ii) $\sup \left\{K(E, f): n \in \mathbb{N}, f_{i} \in \mathcal{H}\right.$ and $\left.E_{i} \in \mathcal{L}\right\}<\infty$ and there is an operator.
$T$ acting on $\mathcal{H}$ such that $\langle X f, T g\rangle=\langle Y f, X g\rangle$ and $\langle T f, T g\rangle=\langle Y f, Y g\rangle$ for all $f$ and $g$ in $\mathcal{H}$.

In Theorem B, we investigated to find a necessary and sufficient condition for normal interpolation problem in $\operatorname{Alg} \mathcal{L}$ and we assumed the density of the range of $X$. In this paper, we tried to delete the range dense condition.

## 2. Results

Let $X$ and $Y$ be operators acting on $\mathcal{H}$. Let

$$
\mathcal{M}_{X}=\left\{\sum_{i=1}^{n} E_{i} X f_{i}: n \in \mathbb{N}, f_{i} \in \mathcal{H} \text { and } E_{i} \in \mathcal{L}\right\}
$$

and

$$
\mathcal{M}_{Y}=\left\{\sum_{i=1}^{n} E_{i} Y f_{i}: n \in \mathbb{N}, f_{i} \in \mathcal{H} \text { and } E_{i} \in \mathcal{L}\right\}
$$

Lemma 2.1. Let $A, X$ and $Y$ be operators on $\mathcal{H}$. If $Y=A X, A f=0$ for all $f$ in ${\overline{\mathcal{M}_{X}}}^{\perp}$ and $A E=E A$ for all $E$ in $\mathcal{L}$. Then the following are equivalent.
(i) $\overline{\mathcal{M}_{Y}} \subset \overline{\mathcal{M}_{X}}$.
(ii) For all $f$ in ${\overline{\mathcal{M}_{X}}}^{\perp}, A^{*} f$ is in ${\overline{\mathcal{M}_{X}}}^{\perp}$.

Proof. (i) $\Rightarrow$ (ii). Let $f$ be a vector in ${\overline{\mathcal{M}_{X}}}^{\perp}$. Then $\left\langle\underline{\left.A^{*} f, E X g\right\rangle}=\langle f, A E X g\rangle=\right.$ $\langle f, E Y g\rangle=0$ for all $g$ in $\mathcal{H}$ and $E$ in $\mathcal{L}$ because $\overline{\mathcal{M}_{Y}} \subset \overline{\mathcal{M}_{X}}$. So $A^{*} f$ is a vector in ${\overline{\mathcal{M}_{X}}}^{\perp}$.
(ii) $\Rightarrow$ (i). Let $f$ be a vector in ${\overline{\mathcal{M}_{X}}}^{\perp}$. Then $0=\left\langle A^{*} f, E X h\right\rangle=\langle f, E Y h\rangle$ for all $E$ in $\mathcal{L}$ and $h$ in $\mathcal{H}$. So $f$ is a vector in ${\overline{\mathcal{M}_{Y}}}^{\perp}$. Hence $\overline{\mathcal{M}_{Y}} \subset \overline{\mathcal{M}_{X}}$.

Lemma 2.2. Let $A, X$ and $Y$ be operators on $\mathcal{H}$. Assume that $A X=Y, A f=0$ for all $f$ in ${\overline{\mathcal{M}_{X}}}^{\perp}, A E=E A$ for all $E$ in $\mathcal{L}$ and $A^{*} A=A A^{*}$. If $f$ is a vector in ${\overline{\mathcal{M}_{X}}}^{\perp}$, then $A^{*} f$ is a vector in ${\overline{\mathcal{M}_{X}}}^{\perp}$.
Proof. Let $f$ be a vector in ${\overline{\mathcal{M}_{X}}}^{\perp}$ and $E X h=A^{*} g_{1}+g_{2}$ for $E$ in $\mathcal{L}$, where $g_{2}$ is a vector in range $A^{+}$. Then

$$
\begin{aligned}
\left\langle A^{*} f, E X h\right\rangle & =\left\langle A^{*} f, A^{*} g_{1}+g_{2}\right\rangle=\left\langle A^{*} f, A^{*} g_{1}\right\rangle+\left\langle A^{*} f, g_{2}\right\rangle \\
& =\left\langle A^{*} f, A^{*} g_{1}\right\rangle=\left\langle A f, A g_{1}\right\rangle=0 .
\end{aligned}
$$

So $A^{*} f$ is a vector in ${\overline{\mathcal{M}_{X}}}^{\perp}$.
Theorem 2.3. The following statements are equivalent.
(i) There is an operator $A$ in $\operatorname{Alg\mathcal {L}}$ such that $Y=A X, A g=0$ for all $g$ in ${\overline{\mathcal{M}_{X}}}^{\perp}, A E=E A$ for all $E$ in $\mathcal{L}$ and $A A^{*}=A^{*} A$.
(ii) $\sup \left\{K(E, f): n \in \mathbb{N}, f_{i} \in \mathcal{H}\right.$ and $\left.E_{i} \in \mathcal{L}\right\}<\infty, \overline{\mathcal{M}_{Y}} \subset \overline{\mathcal{M}_{X}}$ and there is an operator $T$ on $\mathcal{H}$ such that $T f \in \overline{\mathcal{M}_{X}},\langle E X f, T g\rangle=\langle E Y f, X g\rangle$ and $\langle E T f, T g\rangle=\langle E Y f, Y g\rangle$ for all $f, g$ in $\mathcal{H}$ and $E$ in $\mathcal{L}$.
Proof. (i) $\Rightarrow$ (ii). If we assume that (i) holds, then by Theorem A, $\sup \{K(E, f): n \in \mathbb{N}$, $f_{i} \in \mathcal{H}$ and $\left.E_{i} \in \mathcal{L}\right\}<\infty$. And by Lemmas 2.1 and $2.2, \overline{\mathcal{M}_{Y}} \subset \overline{\mathcal{M}_{X}}$. Let $A^{*} X=T$. Then

$$
\langle E X f, T g\rangle=\left\langle E X f, A^{*} X g\right\rangle=\langle A E X f, X g\rangle=\langle E Y f, X g\rangle
$$

and

$$
\langle E T f, T g\rangle=\left\langle E A^{*} X f, A^{*} X g\langle=\langle A E X f, A X g\rangle=\langle E Y f, Y g\rangle\right.
$$

for all $f, g$ in $\mathcal{H}$ and $E$ in $\mathcal{L}$. Since

$$
\langle T f, g\rangle=\left\langle A^{*} X f, g\right\rangle=\langle X f, A g\rangle=\langle X f, 0\rangle=0
$$

for all $f$ in $\mathcal{H}$ and $g$ in ${\overline{\mathcal{M}_{X}}}^{\perp}, T f \in \overline{\mathcal{M}_{X}}$.
Conversely, by Theorem A, there is an operator $A$ in $\mathcal{L}$ such that $A X=Y, A g=$ 0 for all $g$ in ${\overline{\mathcal{M}_{X}}}^{\perp}$ and every $E$ in $\mathcal{L}$ reduces $A$. Since $\langle E X f, T g\rangle=\langle E Y f, X g\rangle$, we have

$$
\left\langle A\left(\sum_{i=1}^{n} E_{i} X f_{i}\right), X g\right\rangle=\left\langle\sum_{i=1}^{n} A E_{i} X f_{i}, X g\right\rangle=\left\langle\sum_{i=1}^{n} E_{i} Y f_{i}, X g\right\rangle=\left\langle\sum_{i=1}^{n} E_{i} X f_{i}, T g\right\rangle .
$$

So $\langle A h, X g\rangle=\langle h, T g\rangle$ for all $h$ in $\overline{\mathcal{M}_{X}}$ and $g$ in $\mathcal{H}$. Since $\langle A h, X g\rangle=0=\langle h, T g\rangle$ for $h \in{\overline{\mathcal{M}_{X}}}^{\perp}$ and $g$ in $\mathcal{H}, A^{*} X=T$. Since $\langle E Y f, Y g\rangle=\langle E T f, T g\rangle$ for all $E$ in $\mathcal{L}$ and $f, g$ in $\mathcal{H}$,

$$
\begin{aligned}
\left\langle A\left(\sum_{i=1}^{n} E_{i} X f_{i}\right), Y g\right\rangle & =\left\langle\sum_{i=1}^{n} E_{i} Y f_{i}, Y g\right\rangle=\left\langle\sum_{i=1}^{n} E_{i} T f_{i}, T g\right\rangle \\
& =\left\langle\sum_{i=1}^{n} E_{i} A^{*} X f_{i}, T g\right\rangle=\left\langle\sum_{i=1}^{n} E_{i} X f_{i}, A T g\right\rangle,
\end{aligned}
$$

for all $n \in N, g$ in $\mathcal{H}$ and $E_{i} \in \mathcal{L}$. So $\langle A f, Y g\rangle=\langle f, A T g\rangle$ for all $f$ in $\overline{\mathcal{M}_{X}}$ and $g$ in $\mathcal{H}$. Since $\langle A f, Y g\rangle=0$ and $\langle f, A T g\rangle=\left\langle A^{*} f, T g\right\rangle=0$ for all $f$ in ${\overline{\mathcal{M}_{X}}}^{\perp}$ and $g$ in $\mathcal{H}\left(A^{*} f \in{\overline{\mathcal{M}_{X}}}^{\perp}\right.$ and $\left.T g \in \overline{\mathcal{M}_{X}}\right)$. Hence $A^{*} Y=A T$. Thus $A A^{*} X=A^{*} A X$. So $A A^{*} f=A^{*} A f$ for all $f$ in $\overline{\mathcal{M}_{X}}$. Since $A E=E A, A^{*} E=E A^{*}$ for all $E$ in $\mathcal{L}$. Since $A^{*} A g=0=A A^{*} g$ for all $g$ in ${\overline{\mathcal{M}_{X}}}^{\perp}$ by Lemmas 2.1 and 2.2, $A A^{*}=A^{*} A$.

Let $X_{1}, X_{2}, \cdots, X_{n}, Y_{1}, Y_{2}, \cdots, Y_{n}$ be operators acting on $\mathcal{H}$ ( $n$ is a fixed natural number). Let

$$
\mathcal{N}_{X}=\left\{\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} X_{i} f_{k, i}: m_{i} \in \mathbb{N}, l \leq n, f_{k, i} \in \mathcal{H} \text { and } E_{k, i} \in \mathcal{L}\right\}
$$

and

$$
\mathcal{N}_{Y}=\left\{\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} Y_{i} f_{k, i}: m_{i} \in \mathbb{N}, l \leq n, f_{k, i} \in \mathcal{H} \text { and } E_{k, i} \in \mathcal{L}\right\}
$$

Theorem C ([3]). Let $\mathcal{L}$ be a commutative subspace lattice on $\mathcal{H}$. Let $X_{1}, X_{2}, \cdots$, $X_{n}, Y_{1}, Y_{2}, \cdots, Y_{n}$ be operators on $\mathcal{H}$. Assume that the range of one of the $X_{p}$ 's is dense in $\mathcal{H}(p=1,2, \cdots, n)$. Let

$$
K(E, f, m)=\frac{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} Y_{i} f_{k, i}\right\|}{\left\|\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} X_{i} f_{k, i}\right\|}
$$

Then the following statements are equivalent.
(i) There exists an operator $A$ in Alg $\mathcal{L}$ such that $A X_{i}=Y_{i}(i=1,2, \cdots, n)$, $A g=0$ for all $g$ in ${\overline{\mathcal{N}_{X}}}^{\perp}$ and every $E$ in $\mathcal{L}$ reduces $A$.
(ii) $\sup \left\{K(E, f, m): m_{i} \in \mathbb{N}, l \leq n, f_{k, i} \in \mathcal{H}\right.$ and $\left.E_{k, i} \in \mathcal{L}\right\}<\infty$.

Lemma 2.4. Let $A, X_{i}$ and $Y_{i}$ be operators on $\mathcal{H}$ for $i=1,2, \cdots, n$. If $A X_{i}=$ $Y_{i}(i=1,2, \cdots, n), A g=0$ for all $g$ in ${\overline{\mathcal{N}_{X}}}^{\perp}$ and $A E=E A$ for all $E$ in $\mathcal{L}$, then the following are equivalent.
(i) $\overline{\mathcal{N}_{Y}} \subset \overline{\mathcal{N}_{X}}$.
(ii) For all $f$ in ${\overline{\mathcal{N}_{X}}}^{\perp}, A^{*} f$ is a vector in ${\overline{\mathcal{N}_{X}}}^{\perp}$.

Proof. (i) $\Rightarrow$ (ii). Let $f$ be a vector in ${\overline{\mathcal{N}_{X}}}^{\perp}$. Then

$$
\left\langle A^{*} f, E X_{i} f_{i}\right\rangle=\left\langle f, A E_{i} X_{i} f_{i}\right\rangle=\left\langle f, E_{i} Y_{i} f_{i}\right\rangle=0
$$

for all $i=1,2, \cdots, n$ and for all $E_{i}$ in $\mathcal{L}$ because $\overline{\mathcal{N}_{Y}} \subset \overline{\mathcal{N}_{X}}$. So $A^{*} f$ is a vector in ${\overline{\mathcal{N}_{X}}}^{\perp}$.
(ii) $\Rightarrow$ (i). Let $f$ be a vector in ${\overline{\mathcal{N}_{X}}}^{\perp}$. Then

$$
0=\left\langle A^{*} f, E_{i} X_{i} h_{i}\right\rangle=\left\langle f, A E_{i} X_{i} h_{i}\right\rangle=\left\langle f, E_{i} Y_{i} h_{i}\right\rangle
$$

for all $E_{i}$ in $\mathcal{L}, h_{i}$ in $\mathcal{H}$ and $i=1,2, \cdots, n$. So $f$ is a vector in ${\overline{\mathcal{N}_{Y}}}^{\perp}$. Hence $\overline{\mathcal{N}_{Y}} \subset \overline{\mathcal{N}_{X}}$.

Lemma 2.5. Let $A, X_{i}$ and $Y_{i}$ be operators on $\mathcal{H}$ for $i=1,2, \cdots, n$. Assume that $A X_{i}=Y_{i}(i=1,2, \cdots, n), A g=0$ for all $g$ in $\overline{\mathcal{N}}^{\perp}, A E=E A$ for all $E$ in $\mathcal{L}$ and $A^{*} A=A A^{*}$. Then $A^{*} f$ is a vector in ${\overline{\mathcal{N}_{X}}}^{\perp}$ for all $f$ in $\overline{\mathcal{N}}^{\perp}{ }^{\perp}$.
Proof. Let $f$ be a vector in $\overline{\mathcal{N}}^{\perp}{ }^{\perp}$ and $E_{i} X_{i} f_{i}=A^{*} g_{i_{1}}+g_{i_{2}}$ for $E_{i}$ in $\mathcal{L}$ and $f_{i}$ in $\mathcal{H}$, where $g_{i_{2}}$ is a vector in range $A^{*}(i=1,2, \cdots, n)$. Then

$$
\begin{aligned}
\left\langle A^{*} f, E_{i} X_{i} f_{i}\right\rangle & =\left\langle A^{*} f, A^{*} g_{i_{1}}+g_{i_{2}}\right\rangle=\left\langle A^{*} f, A^{*} g_{i_{1}}\right\rangle+\left\langle A^{*} f, g_{i_{2}}\right\rangle \\
& =\left\langle A^{*} f, A^{*} g_{i_{1}}\right\rangle=\left\langle A f, A g_{i_{1}}\right\rangle=0
\end{aligned}
$$

So $A^{*} f$ is a vector in ${\overline{\mathcal{N}_{X}}}^{\perp}$.
Theorem 2.6. The following are equivalent.
(i) There is an operator $A$ in $\operatorname{Alg} \mathcal{L}$ such that $Y_{i}=A X_{i}(i=1,2, \cdots, n), A g=0$ for all $g$ in $\overline{\mathcal{N}}^{\perp}, A E=E A$ for all $E$ in $\mathcal{L}$ and $A A^{*}=A^{*} A$.
(ii) $\sup \left\{K(E, f, m): m_{i} \in \mathbb{N}, l \leq n, f_{k, i} \in \mathcal{H}\right.$ and $\left.E_{k, i} \in \mathcal{L}\right\}<\infty, \overline{\mathcal{N}_{Y}} \subset \overline{\mathcal{N}_{X}}$ and there are operators $T_{p}$ on $\mathcal{H}$ such that

$$
\left\langle E_{q} X_{q} f_{q}, T_{p} g_{p}\right\rangle=\left\langle E_{q} Y_{q} f_{q}, X_{p} g_{p}\right\rangle,\left\langle E_{q} T_{q} f_{q}, T_{p} g_{p}\right\rangle=\left\langle E_{q} Y_{q} f_{q}, Y_{p} g_{p}\right\rangle
$$

and $T_{p} f_{p} \in \overline{\mathcal{N}_{X}}$ for $f_{p}, g_{p}$ in $\mathcal{H}, E_{q}$ in $\mathcal{L}$ and $p, q=1,2, \cdots, n$.
Proof. (i) $\Rightarrow$ (ii). By Theorem C, $\sup \left\{K(E, f, m): m_{i} \in \mathbb{N}, l \leq n, f_{k, i} \in \mathcal{H}\right.$ and $\left.E_{k, i} \in \mathcal{L}\right\}$ $<\infty$. By Lemmas 2.4 and 2.5, $\overline{\mathcal{N}_{Y}} \subset \overline{\mathcal{N}_{X}}$. Let $A^{*} X_{p}=T_{p}(p=1,2, \cdots, n)$. Then

$$
\begin{aligned}
\left\langle E_{q} X_{q} f_{q}, T_{p} g_{p}\right\rangle & =\left\langle E_{q} X_{q} f_{q}, A^{*} X_{p} g_{p}\right\rangle \\
& =\left\langle A E_{q} X_{q} f_{q}, X_{p} g_{p}\right\rangle \\
& =\left\langle E_{q} Y_{q} f_{q}, X_{p} g_{p}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle E_{q} T_{q} f_{q}, T_{p} g_{p}\right\rangle & =\left\langle E_{q} A^{*} X_{q} f_{q}, A^{*} X_{p} g_{p}\right\rangle \\
& =\left\langle A E_{q} X_{q} f_{q}, A X_{p} g_{p}\right\rangle \\
& =\left\langle E_{q} Y_{q} f_{q}, Y_{p} g_{p}\right\rangle
\end{aligned}
$$

Since $\left\langle T_{p} f_{p}, g\right\rangle=\left\langle A^{*} X_{p} f_{p}, g\right\rangle=\left\langle X_{p} f_{p}, A g\right\rangle=\left\langle X_{p} f_{p}, 0\right\rangle=0$ for all $f_{p}$ in $\mathcal{H}$ and $g$ in ${\overline{\mathcal{N}_{X}}}^{\perp}, T_{p} f_{p} \in \overline{\mathcal{N}_{X}}$.
(ii) $\Rightarrow$ (i). By Theorem C, there is an operator $A$ in $\operatorname{Alg} \mathcal{L}$ such that $A X_{i}=Y_{i}$ $(i=1,2, \cdots, n), A f=0$ for all $f$ in $\overline{\mathcal{N}}^{\perp}$ and every $E$ in $\mathcal{L}$ reduces $A$. Since $\left\langle E_{q} X_{q} f_{q}, T_{p} g_{p}\right\rangle=\left\langle E_{q} Y_{q} f_{q}, X_{p} g_{p}\right\rangle$ for all $E_{q}$ in $\mathcal{L}$ and all $p, q=1,2, \cdots, n$,

$$
\begin{aligned}
\left\langle A\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} X_{i} f_{k, i}\right), X_{p} g_{p}\right\rangle & =\left\langle\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} Y_{i} f_{k, i}, X_{p} g_{p}\right\rangle \\
& =\left\langle\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} X_{i} f_{k, i}, T_{p} g_{p}\right\rangle
\end{aligned}
$$

$m_{i} \in \mathbb{N}, l \leq n, f_{k, i} \in \mathcal{H}, E_{k, i} \in \mathcal{L}$ and $p=1,2, \cdots, n$. So $\left\langle A h, X_{p} g_{p}\right\rangle=\left\langle h, T_{p} g_{p}\right\rangle$ for all $h$ in $\overline{\mathcal{N}_{X}}, g_{p}$ in $\mathcal{H}$ and $p=1,2, \cdots, n$. Since $\left\langle A h, X_{p} g_{p}\right\rangle=0=\left\langle h, T_{p} g_{p}\right\rangle$ for all $h$ in ${\overline{\mathcal{N}_{X}}}^{\perp}, g_{p}$ in $\mathcal{H}$ and $p=1,2, \cdots, n, A^{*} X_{p}=T_{p}$. Since $\left\langle E_{q} Y_{q} f_{q}, Y_{p} g_{p}\right\rangle=$ $\left\langle E_{q} T_{q} f_{q}, T_{p} g_{p}\right\rangle, E_{q} \in \mathcal{L}, f_{q}, g_{q} \in \mathcal{H}$ and $p, q=1,2, \cdots, n$,

$$
\begin{aligned}
\left\langle A\left(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} X_{i} f_{k, i}\right), Y_{p} g_{p}\right\rangle & =\left\langle\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} Y_{i} f_{k, i}, Y_{p} g_{p}\right\rangle \\
& =\left\langle\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} T_{i} f_{k, i}, T_{p} g_{p}\right\rangle \\
& =\left\langle\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} A^{*} X_{i} f_{k, i}, T_{p} g_{p}\right\rangle \\
& =\left\langle\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} X_{i} f_{k, i}, A T_{p} g_{p}\right\rangle
\end{aligned}
$$

So $\left\langle A f, Y_{p} g_{p}\right\rangle=\left\langle f, A T_{p} g_{p}\right\rangle$ for all $f$ in $\overline{\mathcal{N}_{X}}$ and $g_{p}$ in $\mathcal{H}(p=1,2, \cdots, n)$. Since $\left\langle A f, Y_{p} g_{p}\right\rangle=0$ and $\left\langle f, A T_{p} g_{p}\right\rangle=\left\langle A^{*} f, T_{p} g_{p}\right\rangle=0$ for all $f$ in $\overline{\mathcal{N}}^{\perp}, g_{p}$ in $\mathcal{H}$ and $p=1,2, \cdots, n$ by Lemmas 2.4 and 2.5. So $A^{*} Y_{p}=A T_{p}(p=1,2, \cdots, n)$. Thus $A^{*} A X_{p}=A A^{*} X_{p}(p=1,2, \cdots, n)$. Hence $A^{*} A f=A A^{*} f$ for all $f$ in $\overline{\mathcal{N}_{X}}$. Since $A^{*} A g=0=A A^{*} g$ for all $g$ in ${\overline{\mathcal{N}_{X}}}^{\perp}$ by Lemmas 2.4 and $2.5, A^{*} A=A A^{*}$.

Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be two infinite sequences of operators on $\mathcal{H}$. Let

$$
\mathcal{K}_{X}=\left\{\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} X_{i} f_{k, i}: m_{i}, l \in \mathbb{N}, f_{k, i} \in \mathcal{H} \text { and } E_{k, i} \in \mathcal{L}\right\}
$$

and

$$
\mathcal{K}_{Y}=\left\{\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} E_{k, i} Y_{i} f_{k, i}: m_{i}, l \in \mathbb{N}, f_{k, i} \in \mathcal{H} \text { and } E_{k, i} \in \mathcal{L}\right\} .
$$

With the similar proof as Lemmas 2.4, 2.5 and Theorem 2.6, we can get the following Theorem.

Theorem 2.7. The following statements are equivalent.
(i) There is an operator $A$ in $\operatorname{Alg\mathcal {L}}$ such that $A X_{n}=Y_{n}(n=1,2, \cdots), A g=0$ for all $g$ in $\overline{\mathcal{K}}_{X}{ }^{\perp}$, every $E$ in $\mathcal{L}$ reduces $A$ and $A A^{*}=A^{*} A$.
(ii) $\sup \left\{K(E, f, m): m_{i}, l \in \mathbb{N}, f_{k, i} \in \mathcal{H}\right.$ and $\left.E_{k, i} \in \mathcal{L}\right\}<\infty, \overline{\mathcal{K}_{Y}} \subset \overline{\mathcal{K}_{X}}$ and there are operators $T_{n}$ on $\mathcal{H}(n=1,2, \cdots)$ such that $\left\langle E_{q} X_{q} f_{q}, T_{p} g_{p}\right\rangle=$ $\left\langle E_{q} Y_{q} f_{q}, X_{p} g_{p}\right\rangle,\left\langle E_{q} T_{q} f_{q}, T_{p} g_{p}\right\rangle=\left\langle E_{q} Y_{q} f_{q}, Y_{p} g_{p}\right\rangle$ and $T_{p} f_{p} \in \overline{\mathcal{N}_{X}}$ for $f_{p}, g_{p}$ in $\mathcal{H}, E_{q}$ in $\mathcal{L}$ and $p, q=1,2, \cdots$.

## References

[1] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17(1966), 413-415.
[2] A. Hopenwasser, Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math., 33(4) (1989), 657-672.
[3] Y. S. Jo and J. H. Kang, Interpolation problems in AlgL , to appear in the J. App. Math. and Computing.
[4] Y. S. Jo and J. H. Kang, Normal interpolation problems in AlgL, to appear in Comm. of KMS.
[5] E. Katsoulis, R. L. Moore and T. T. Trent, Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory, 29(1993), 115-123.

