• Title/Summary/Keyword: Subsea tunnel

Search Result 78, Processing Time 0.025 seconds

Coupled analysis for the stability estimation of a subsea tunnel in discontinuous rock masses using sensitivity analysis (민감도 분석을 통한 불연속 암반 내의 해저터널의 안정성 평가를 위한 연계해석)

  • You, Kwang-Ho;Lee, Dong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.421-430
    • /
    • 2008
  • In discontinuous rock masses, hydraulic-mechanical coupled analyses are required since groundwater flow in joints have a great influence on the stability of a subsea tunnel. In this study, a sensitivity analysis was performed based on coupled analysis to verify the routine which can estimate the safety factor of a tunnel in discontinuous rock mass. To this end, 324 cases of numerical calculations were performed with a commercial program, UDEC-2D. As a result, it was confirmed that the proposed routine for coupled analysis in discontinuous rock mass could give a reasonable result for the estimation of safety factor of a tunnel. Therefore, it is expected that the safety factor estimation method used in this study can be effectively applied for the stability estimation of a subsea tunnel in discontinuous rock masses.

  • PDF

Management of Risk Scenarios based on Ground Conditions under Construction of a Subsea Tunnel (해저터널 시공중 지반조건별 위험 시나리오 관리기법)

  • Park, Eui-Seob;Shin, Hee-Soon;Shin, Yong-Hoon;Kim, Taek-Gon
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.275-286
    • /
    • 2009
  • In order to establish the causes and measures for technical risks that occur in various ground conditions when a subsea tunnel is excavated, it is important to configure expected risk scenarios. In addition, when the risk scenarios are classified because the scenario that occurs along all tunnel route and the scenario limited to some area are considered together, a logical framework with systematic and organized responses can be provided for project managements. In this research, project risk scenarios and management elements were configurated, and the project schedule was established for the management techniques to the risk scenario. The risk scenarios expected in a subsea tunnel were classified into a common risk scenario and a special risk scenario, and the concept which can combine with the project management elements was derived.

TBM segment lining section design of hypothetical subsea tunnels (가상 해저터널 TBM공법 적용 시 세그먼트 단면설계)

  • Choi, Jung-Hyuk;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • In this paper, the results of evaluation on the member forces in the virtual subsea tunnel lining segments and optimal thickness of the segment with changes in depth were presented. To evaluate member forces on the hypothetical subsea tunnelling cases were developed and the segmental lining member forces were calculated by performing structural analysis using the 2-Ring Beam model. Through a preliminary reinforcement design review of the cross-section using calculated member force, optimal reinforcement design was selected. Based on the results, the variations of member forces with construction conditions such as the cover depth and the hydraulic pressure are presented. In addition, optimum segment lining designs were developed for various tunnelling conditions.

Management and concept of the monitoring system considering the characteristics of subsea tunnels (해저터널의 특성을 고려한 계측 개념 및 관리 방안)

  • Park, Eui-Seob;Shin, Hee-Soon;Cheon, Dae-Sung;Jung, Yong-Bok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.523-536
    • /
    • 2013
  • In order to ensure the safety of the subsea tunnel during its construction and operation, unlike the underground structures on land, the special monitoring system is essential which considers the characteristics of subsea tunnels in addition to conventional stress and displacement measurements applied to existing land tunnels. Therefore, the concept applied to NATM is reorganized to evaluate the stability of subsea tunnels. And the observation system for making a monitoring plan, the critical strain theory for tunnel safety management and MS monitoring methods for detecting the local failure and crack initiation of rock and supports, are introduced. Finally, the scheme of monitoring and management for subsea tunnels by using these methods is suggested.

Study on flexible segment efficiency for seismic performance improvement of subsea tunnel (해저터널 내진성능 향상을 위한 Flexible segment 효용성 연구)

  • Jang, Dong-In;Kim, Jong-Ill;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.503-515
    • /
    • 2017
  • Underground structures that have recently become larger are required to be stable not only during normal times but also during earthquakes. Especially, it is very important to maintain the stability of the subsea tunnels during the earthquake. The objective of this paper is to verify the effectiveness of the flexible segment, which is one of the breakthrough facilities to maintain the stability of the subsea tunnel during the earthquake using the shaking table test. Another goal of this paper is to propose the optimum position of the flexible segment through 3D dynamic numerical analysis based on the verified results from shaking table tests. The 1g shaking table test considering the similarity ratio (1:100) to the cross section of the selected artificial subsea tunnel was carried out considering the Geongju and Artificial seismic waves, longitudinal and lateral wave, and with/without flexible segments eight times or more. As a result of the shaking table test, it was confirmed that the flexible segment is effective in improving the seismic performance of the undersea tunnel in all the experimental results. In addition, 3D dynamic numerical analysis was performed to select the optimum position of the flexible segment which is effective for improving seismic performance. As a result, it was confirmed that the seismic acceleration is attenuated when the flexible segment is installed adjacent to the branch section in subsea tunnel.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

A Numerical Analysis: Effects of Hydraulic Characteristics of a Hazardous Zone on the Face Stability in Subsea Tunnelling (해저터널 시공중 문제구간의 수리적 특성이 막장의 안정성에 미치는 영향에 관한 수치해석적 연구)

  • Hong, Eun-Soo;Park, Eui-Seob;Shin, Hee-Soon;Kim, Hyung-Mok;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.366-374
    • /
    • 2008
  • Tunnelling under water table induces many geotechnical problems because of groundwater. In subsea tunneling, reduction of face stability can induce flooding in the vicinity of a fracture zone characterized by high permeability and high water pressure. In this study, the effects of high water pressure on the stability of a tunnel face in a limited zone with high permeability(hazardous zone) are analyzed. On the basis of the 'advance core' concept, the seepage force acting on a hypothetical cylinder ahead of a tunnel face is modeled. This study focuses on the hydraulic behavior of the ground ahead of the tunnel face by three-dimensional steady-state seepage analyses. The impact of the hazardous zone on the seepage force and stability of the tunnel face are simulated and analyzed. In light of the analysis results, it is estimated that the distance from the tunnel face to the exterior boundary limit, which the seepage force significantly affects the stability of the tunnel face, of a hypothetical cylinder is approximately 5 times the tunnel radii. Despite the restrictive assumptions of this study, the results are highly indicative regarding the risks of hazardous zones.

The development of a back analysis program for subsea tunnel stability under operation: transversal tunnel section (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 횡단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Lee, Sang-Hyun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.195-212
    • /
    • 2017
  • When back analysis is used for the assessment of an operating subsea tunnel safety in various measurement information such as stress, water pressure and tunnel lining and ground stiffness degradation, the reliable results within tolerable error rate can be obtained. By utilizing a commercial geotechnical analysis program FLAC3D, back analysis can be performed with a DEA which has already been successfully validated in previous studies. However, relative more time-consumption is the drawback of this approach. For this reason, this study introduced beam-spring model-based on FEM solver which uses less analysis time relatively. Beam-spring program capable of structural analysis of a circular tunnel section was developed by using Python language and combined with the built-DEA. From the measurement datum, expected to estimate the stability of an operation tunnel close to real-time.

Using Bayesian network and Intuitionistic fuzzy Analytic Hierarchy Process to assess the risk of water inrush from fault in subsea tunnel

  • Song, Qian;Xue, Yiguo;Li, Guangkun;Su, Maoxin;Qiu, Daohong;Kong, Fanmeng;Zhou, Binghua
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.605-614
    • /
    • 2021
  • Water inrush from fault is one of the most severe hazards during tunnel excavation. However, the traditional evaluation methods are deficient in both quantitative evaluation and uncertainty handling. In this paper, a comprehensive methodology method combined intuitionistic fuzzy AHP with a Bayesian network for the risk assessment of water inrush from fault in the subsea tunnel was proposed. Through the intuitionistic fuzzy analytic hierarchy process to replace the traditional expert scoring method to determine the prior probability of the node in the Bayesian network. After the field data is normalized, it is classified according to the data range. Then, using obtained results into the Bayesian network, conduct a risk assessment with field data which have processed of water inrush disaster on the tunnel. Simultaneously, a sensitivity analysis technique was utilized to investigate each factor's contribution rate to determine the most critical factor affecting tunnel water inrush risk. Taking Qingdao Kiaochow Bay Tunnel as an example, by predictive analysis of fifteen fault zones, thirteen of them are consistent with the actual situation which shows that the IFAHP-Bayesian Network method is feasible and applicable. Through sensitivity analysis, it is shown that the Fissure development and Apparent resistivity are more critical comparing than other factor especially the Permeability coefficient and Fault dip. The method can provide planners and engineers with adequate decision-making support, which is vital to prevent and control tunnel water inrush.

New Horizontal Pre-Drainage System in Subsea Tunnelling (수평시추 방식에 의한 해저터널 시공중의 막장 수압경감)

  • Hong, Eun-Soo;Shin, Hee-Soon;Park, Chan;Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • Most of flooding cases in tunnels are associated with huge inrushes of water due to the fracture zone with very high water head. To find out the causes and countermeasures for flooding cases, a dozen of tunneling cases are studied. Case studies presented here show that if the flooding had been forecasted and pre-drained prior to the tunnel excavation, such accidents could have been prevented. From this observation, we suggest a new horizontal drainage system with pre-investigation and pre-drainage concept. Seepage analyses are performed to analyze the water head reduction effect on the tunnel face by drainage pipes during the construction of subsea tunnels. Drainage system analyses are performed to analyze performance of the drainage system. These analysis results show that the suggested horizontal pre-drainage system provides a clear drainage and water head reducing effect. Finally, the proposed system can be a new alternative to the present water controlling methods applied to subsea tunnels.