• Title/Summary/Keyword: Submicron

Search Result 531, Processing Time 0.033 seconds

SUBMICRON-RESOLUTION DOMAIN REVERSAL STUDY OF Co-BASED MULTILAYERS USING MAGNETO-OPTICAL MICROSCOPE MAGNETOMETER (MOMM)

  • Shin, Sung-Chul;Choe, Sug-Bong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.121-146
    • /
    • 2000
  • A novel system of magneto-optical microscope magnetometer (MOMM), capable of simultaneous local problems of magnetic properties as well as real-time magnetic domain evolution imaging of ferromagnetic thin films with 400-nm spatial resolution, New findings in domain reveral dynamics of Co-based multilayers: The reversal ratio of V/R is a governing physical parameter. The activation volumes of wall-motion and nucleation processes are generally unequal. Submicron-scale local coercivity variation determines domain reversal dynamics. A thermally activated relaxation process during domain reversal is existed on the submicron-scale in realistic films. Local variation of magnetic properties should be considered for a realistic simulation. The fantastic capabilities of the MOMM can open many possibilities to broaden and deepen our understanding of domain reversal phenomena in ferromagnetic thin films.

  • PDF

Bias and Gate-Length Dependent Data Extraction of Substrate Circuit Parameters for Deep Submicron MOSFETs (Deep Submicron MOSFET 기판회로 파라미터의 바이어스 및 게이트 길이 종속 데이터 추출)

  • Lee Yongtaek;Choi Munsung;Ku Janam;Lee Seonghearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.27-34
    • /
    • 2004
  • The study on the RF substrate circuit is necessary to model RF output characteristics of deep submicron MOSFETs below 0.2$\mum$ gate length that have bun commercialized by the recent development of Si submicron process. In this paper, direct extraction methods are developed to apply for a simple substrate resistance model as well as another substrate model with connecting resistance and capacitance in parallel. Using these extraction methods, better agreement with measured Y22-parameter up to 30 GHz is achieved for 0.15$\mum$ CMOS device by using the parallel RC substrate model rather than the simple resistance one, demonstrating the RF accuracy of the parallel model and extraction technique. Using this model, bias and gate length dependent curves of substrate parameters in the RF region are obtained by increasing drain voltage of 0 to 1.2V at deep submicron devices with various gate lengths of 0.11 to 0.5㎛ These new extraction data will greatly contribute to developing a scalable RF nonlinear substrate model.

A study hot-carrier degradation on submicron devices (Submicron device에서의 hot-carrier 열화에 관한 연구)

  • 이용희;김현호;최영규;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.867-870
    • /
    • 1998
  • In this paper we simulated 0.30um NMOS transitor to analysis hot carrier degradation depend on As, As+P, P LDD structure. As a result we obtained As+P LDD structure was good hot carrier immunity. Also we find that hog carrier life time improved a sincresing P dose due to P dose helps in grading the nLDD junction. However As-only junction was poor due to junction high peak position located near the surface.

  • PDF

A study on the degradation by the hot carrier trapping of the submicron MOSFET with long stress condition (장시간 스트레스 조건에서 submicron MOSFET의 열전자 트래핑에 의한 노화현상에 대한 연구)

  • 홍순석
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.357-361
    • /
    • 1995
  • An experiment on characteristics of nMOSFET's in the long stress condition with the maximum of the substrate current has been carried out in order to study on the degradation due to the hot-carrier effect. Based on the measured result of the threshold voltage, the damage is mostly due to the hole injection into the oxide. After long stress, it was shown that the drain current increased at low gate voltages and hence decreased at high gate voltages.

  • PDF

A study on the two-dimensional of modeling for the submicon MOSFET (Submicron MOSFET의 2차원적 모델링에 관한 연구)

  • 홍순석;이정일;여정현
    • Electrical & Electronic Materials
    • /
    • v.6 no.1
    • /
    • pp.40-49
    • /
    • 1993
  • 본 논문은 fitting 파라미커를 배제하고 2차원적 Poisson 방식을 도출해서 Submicron MOSFET의 model식을 완전히 해석적으로 성립시켰다. 이로 인해 포화영역, 문턱전압, 강반전에 대한 것이 동시에 표현되는 정확한 드레인 전류가 유도되었다. 더욱이 이 model은 short-channel과 body효과, DIBL효과, 그리고 carrier운동에 대한 것도 설명할 수 있으며 온도와 n$^{+}$접합, 산화층에 관련되는 문턱전압도 표현할 수 있었다.

  • PDF

VLSI Design Innovation in the Deep-Submicron Era

  • Imai, Masaharu;Takeuchi, Yoshinori
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.419-420
    • /
    • 2000
  • This paper describes the innovation of VLSI design methodology in the coming decade. Technology trend of VLSI fabrication is surveyed first. Then the so-called “design crisis” is analyzed. Finally, possible design methodology to overcome the design crisis is discussed.

  • PDF

일정하지 않은 분포를 갖는 자기장에 의한 자화반전에 대한 연구

  • 김경숙;이철의;임상호
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.168-169
    • /
    • 2002
  • Magnetic tunneling junction을 이용한 MRAM의 실용화에 있어서 무엇보다 중요한 요소 중의 하나는 밀도를 높이는 것으로, MRAM이 경쟁력을 갖는 메모리 소자가 되기 위해서는 소자의 크기를 submicron 영역까지 줄여야 한다. 소자의 크기가 submicron까지 줄어도 end domain이 존재하는데, 이것은 자화반전을 incoherent하게 일어나게 함으로써 자기저항비를 감소시키고, 또한 자화반전을 불규칙하게 함으로써 자화반전이 일어나는 자기장의 크기가 일정하게 되지 않기 때문에 소자의 신뢰성에 큰 문제를 야기시킨다 [1]. (중략)

  • PDF

Planarization of Multi-level metal Structure by Chemical Mechanical Polishing (CMP 공정을 이용한 Multilevel Metal 구조의 평탄화 연구)

  • 김상용;서용진;김태형;이우선;김창일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.456-460
    • /
    • 1997
  • As device sizes are scaled to submicron dimensions, planarization technology becomes increasing1y important, both during device fabrication and during formation of multilevel interconnects and wiring. Chemical Mechanical Polishing (CMP) has emerged recently as a new processing technique for achieving a high degree of planarization for submicron VLSI applications. This paper is presented the results of CMP process window characterization studies for 0.35 micron process with 6 metal layers.

  • PDF

Comparison of the Kinetic Behaviors of Fe2O3 Spherical Submicron Clusters and Fe2O3 Fine Powder Catalysts for CO Oxidation

  • Yoo, Seung-Gyun;Kim, Jin-Hoon;Kim, Un-Ho;Jung, Jin-Seung;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1379-1384
    • /
    • 2014
  • ${\alpha}-Fe_2O_3$ spherical particles having an average diameter of ca. 420 nm and ${\alpha}-Fe_2O_3$ fine particles (< 10 ${\mu}m$ particle size) were prepared to examine as catalysts for CO oxidation. Kinetic studies on the catalytic reactions were performed in a flow reactor using an on-line gas chromatography system operated at 1 atm. The apparent activation energies and the partial orders with respect to CO and $O_2$ were determined from the rates of CO disappearance in the reaction stage showing a constant catalytic activity. In the temperature range of $150-275^{\circ}C$, the apparent activation energies were calculated to be 13.7 kcal/mol on the ${\alpha}-Fe_2O_3$ spherical submicron clusters and 15.0 kcal/mol on the ${\alpha}-Fe_2O_3$ fine powder. The Pco and $Po_2$ dependencies of rate were investigated at various partial pressures of CO and $O_2$ at $250^{\circ}C$. Zero-order kinetics were observed for $O_2$ on both the catalysts, but the reaction order for CO was observed as first-order on the ${\alpha}-Fe_2O_3$ fine powder and 0.75-order on the ${\alpha}-Fe_2O_3$ spherical submicron clusters. The catalytic processes including the inhibition process by $CO_2$ on the ${\alpha}-Fe_2O_3$ spherical submicron powder are discussed according to the kinetic results. The catalysts were characterized using XRD (X-ray powder diffraction), FE-SEM (field emission-scanning electron microscopy), HR-TEM (high resolution-transmission electron microscopy), and $N_2$ sorption measurements.