• Title/Summary/Keyword: Submarine Cable

Search Result 115, Processing Time 0.043 seconds

Experimental Analysis on the Cable Tension During the Laying and Recovery of a Submarine Cable (해저케이블 포설/회수시 장력에 대한 실험적 분석)

  • Yang Seung-Yun;Kim Jeong-Hoon;Kim Kyung-Sub;Kim Jae-San;Park Kwi-Ho;Kim Gee-Won;Lee Sang-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.32-38
    • /
    • 2005
  • In this study, Experimental analysis on submarine cable tension was performed for the safe and efficient laying and recovery of a submarine cable. The tension analysis was done through the analyzed data using the cable dynamic theory and the measured data using the experiment. The analyzed cable tension was able to decide requirements for the purpose of laying and recovery of the submarine cable. As the result of tension analysis for a Submarine cable, it was shown a proper feasibility to determine the laying and recovery conditions of the submarine cable.

A Study on the Method to Minimize Measuring Burial Depth Error for Submarine Cable (해저케이블 매설심도 측정오차 저감 방법에 관한 연구)

  • An, Yong-Ho;Kim, Yong-Hak;Han, Jeong-Yeol;Lee, You-Jin;Han, Byoung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.329-334
    • /
    • 2012
  • The distribution submarine cables are normally used for power supply at island, which are mostly installed in the southern coast of KOREA, and partially installed in the west coast and Jeju-Island. There are two way of submarine cable burying system, buried and unburied type. Since 2003, KEPCO is entirely being constructing the distribution submarine cable by buried type. In this case, 'burial depth' is key index for evaluating the suitability of the buried situation. Therefore, the measurement accuracy of 'burial depth' is a big issue for burying system in the distribution submarine cable. This paper demonstrates the measurement error of burial depth that is affected by electrical factor such as grounding type of submarine cable in case of magnetic field detection method, and indicates the method to reduce the measurement error in buried type of distribution submarine cable system.

Analyses of the submarine cable faults of EAC and Protection Ways (동아시아횡단 해저케이블 고장분석을 통한 보호방안)

  • Yoo, Jae-Duck;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.227-232
    • /
    • 2010
  • Submarine cable system has been affected by humankind activities like trawl and stow net which has been threatening submarine cable in Korea. This research presents the protection ways of submarine cable through the analyses of cable faults on EAC system for 8 years.

A study for the stability of international submarine cables within Korean waters (한국 연근해 국제해저광케이블 안정성을 위한 연구)

  • Lee, Young-Sun;Jung, Jae-Jin;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.34-39
    • /
    • 2007
  • Submarine cable is the leading means of international communication across oceans. However, when such important submarine cable is damaged, that causes not only huge amount for the repair but also losing the nation's reliability internationally, and has brought about much difficulty and loss due to the interruption of communication. So, in order to deduce methods for the stability of submarine cables, this paper is studying the present status of submarine cables and the causes of cable faults, and suggesting techniques and regulations to protect from the trouble of submarine cables.

  • PDF

Transient Phenomena Analysis of HVDC Submarine Cable (HVDC 해저케이블의 과도현상 해석)

  • Jang, Hwa-Youn;Jeong, Seok-San;An, Chun-Yong;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.490-491
    • /
    • 2011
  • This paper describes the EMTP/ATP Draw modeling HVDC submarine cable. HVDC submarine cables consist of conductor, lead sheath and amore. It is different from general cable which is composed with just conductor and aluminium sheath. Therefore, the transient characteristics are totally different between HVDC submarin cable and general cable. However, the study on HVDC cable modeling and Transient are insufficient. In this paper, characteristic and effectiveness of HVDC Submarine Cable through Transient analysis. Therefore it is evaluated that the application of HVDC Submarine cable at the field should be considered cautiously when more detailed transient analysis, another electrical testes and economic evaluations are implemented.

  • PDF

A study for construction of Shore-end Submarine cable (천해부에서 해저케이블 건설 연구)

  • Jung, Jae-Jin;Lee, Young-Sun;Shin, Hyun-Shik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.185-190
    • /
    • 2007
  • The biggest cause of submarine cable fault is fishing activity such as 70% by anchor of fishing boats and occurs within 200m the depth of water. It needs a regulation for protection of submarine cable from the fishing boats and construction of cable at shore-end. This paper is studying a plan and regulation to install the construction among the subsee users, and the burial technique of submarine cable at shore-end suggests to manage from company to government.

  • PDF

Slack Control for Laying a Submarine Cable (해저 케이블의 포설을 위한 여장제어)

  • Yang, Seung-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.502-508
    • /
    • 2001
  • In this paper, slack is computed from a comparison of the cable pay out rate and the ship ground speed in accordance with laying conditions, and the speed controller of the cable engine based on an H(sub)$\infty$ servo control id designed for adjusting the cable engine in order to lay a desired amount of slack. The controller is designed for robust tracking of the cable engine under disturbances. The performance of the designed controller is evaluated by computer simulation, and, consequently, a feasibility study for laying the submarine cable stably is done through analyzing simulation results.

  • PDF

Experiments on the Submarine Cable Protection Methods Considering the Connection Type (체결형상을 고려한 해저케이블 보호공법에 관한 실험)

  • Yoon, Jae Seon;Ha, Taemin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.329-329
    • /
    • 2017
  • In this study attempted to evaluate the stability of the protection methods by examining hydraulic characteristics of the area around the point in which marine cable protector is installed such as surf zone occurrence point of shore-end submarine cables suitable for coastal marine environmental conditions, flow rate t the tope of the protector and maximum wave height, and to provide basic data for the selection of the optimal protection method. In performing hydraulic model experiments, the topography of submarine cable installation location was reproduced in 2-D sectional channel, and models appropriate for experimental scale and similitude law were produced and installed for each condition of submarine cables and protectors. Since the topography and submarine cable protectors were reproduced and installed in 2-D sectional channel, the exact reproduction of surf and transformation in shallow water zone was possible, and thus the physical properties could be clearly analyzed. For stability review, an experiment to examine the stability was conducted using a wave maker with 50-year frequency design waves as target, and wave height and cycles were applied based on the approximate lowest low water level(Approx. L.L.W), which is the most dangerous in submarine cable protection methods. As for experimental time, typhoon passing time in summer (about 3 hours) was applied, and wave patterns and deviation ratio of the submarine cable protector were investigated after making irregular waves corresponding to design waves. In addition, current meter and wave height meter were installed at the installation location of the submarine cable protector, and the flow rates and wave height at the top of the protector were measured and analyzed to review hydraulic properties.

  • PDF

Insulation Characteristics Evaluation of Submarine Cables Inside the J-Tube of Offshore Wind Farms (해상풍력단지 J-Tube 내부 해저케이블의 절연 특성 평가)

  • Seung-Won Lee;Jin-Wook Choe;Hae‑Jong Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.570-575
    • /
    • 2023
  • Demand and necessity for eco-friendly offshore wind farms have been increasing. Research on submarine cables is constantly being considered for a reliable and stable power transmission. This study aimed to evaluate the thermal aging characteristic of submarine cables inside the J-tube of offshore wind farms. In this study, a submarine cable was set in three sections: The first is the part exposed to the air above the sea level at high temperature. The second is the section exposed to repeated temperature fluctuation as the sea level rises and falls. The third is the part submerged at low temperature below the sea level. Aged samples were tested by using the method of electrical evaluation to obtain insulation characteristics. The experimental results show that the dielectric breakdown of the sample with temperature fluctuation was 7% lower than the sample with a constant temperature; thereby, demonstrating that the section where the temperature fluctuation occurred in the submarine cables was weaker than the other. The sections of submarine cable with temperature fluctuations are believed as a weak point during operation; therefore, this part should be monitored preferentially.

Mechanical and Electrical Performance of 180kV HVDC Submarine Cable System (180kV HVDC 해저케이블 기계적/전기적 특성 평가)

  • Kim, N.Y.;Lee, T.H.;Lee, S.J.;Ji, B.K.;Kim, J.N.;Jeon, S.I.;Yun, H.S.;Joung, S.K.;Kang, C.H.;An, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.616-618
    • /
    • 2007
  • This paper describes the mechanical and electrical test on HVDC submarine cable, Flexible Repair Joint and termination for 180kV. This HVDC submarine cable was manufactured using LS cable's unique skill and would be applied the HVDC submarine cable system in korea. The performance test consist of mechanical test and electrical test. The tensile bending test and tensile test was done as the mechanical test and Electrical test is DC voltage and Impulse test. The tensile bending test carried out 6 times(double of specified times) for maximum reliability. The DC test voltage is $\pm$400kV/1hr. We estimate the lower limit of DC breakdown voltage is 600kV. The impulse test voltage is $\pm$800kV/10shots. The type of developed cables is the MI type. Its insulation consist of paper tapes impregnated with a high viscosity oil. The development of new HVDC cable is available for HVDC underground or submarine power transmission. The developed HVDC cable, FRJ and termination have passed the mechanical and electrical test successfully and showed excellent performance.

  • PDF