• Title/Summary/Keyword: Sub-diffusive transport

Search Result 14, Processing Time 0.019 seconds

Preliminary Studies on Double-Diffusive Natural Convection During Physical Vapor Transport Crystal Growth of Hg2Br2 for the Spaceflight Experiments

  • Ha, Sung Ho;Kim, Geug Tae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.289-300
    • /
    • 2019
  • We have conducted a preliminary numerical analysis to understand the effects of double-diffusive convection on the molar flux at the crystal region during the growth of mercurous bromide ($Hg_2Br_2$) crystals in 1 g and microgravity (${\mu}g$) conditions. It was found that the total molar fluxes decay first-order exponentially with the aspect ratio (AR, transport length-to-width), $1{\leq}AR{\leq}10$. With increasing the aspect ratio of the horizontal enclosure from AR = 1 up to Ar = 10, the convection flow field shifts to the advective-diffusion mode and the flow structures become stable. Therefore, altering the aspect ratio of the enclosure allows one to control the effect of the double diffusive natural convection. Moreover, microgravity environments less than $10^{-2}g$ make the effect of double-diffusive natural convection much reduced so that the convection mode could be switched over the advective-diffusion mode.

Heat transfer study of double diffusive natural convection in a two-dimensional enclosure at different aspect ratios and thermal Grashof number during the physical vapor transport of mercurous bromide (Hg2Br2): Part I. Heat transfer

  • Ha, Sung Ho;Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • A computational study of combined thermal and solutal convection (double diffusive convection) in a sealed crystal growth reactor is presented, based on a two-dimensional numerical analysis of the nonlinear and strongly coupled partial differential equations and their associated boundary conditions. The average Nusselt numbers for the source regions are greater than those at the crystal regions for 9.73 × 103 ≤ Grt ≤ 6.22 × 105. The average Nusselt numbers for the source regions varies linearly and increases directly with the thermal Grashof number form 9.73 × 103 ≤ Grt ≤ 6.22 × 105 for aspect ratio, Ar (transport length-to-width) = 1 and 2. Additionally, the average Nusselt numbers for the crystal regions at Ar = 1 are much greater than those at Ar = 2. Also, the occurrence of one unicellular flow structure is caused by both the thermal and solutal convection, which is inherent during the physical vapor transport of Hg2Br2. When the aspect ratio of the enclosure increases, the fluid movement is hindered and results in the decrease of thermal buoyancy force.

Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO (염화제일수은과 일산화질소의 물리적 승화법 공정에서의 확산-대류에 미치는 에스펙트 비율의 영향)

  • Kim, Geug-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.746-752
    • /
    • 2015
  • This study investigates the effects of aspect ratio (transport length-to-width) on diffusive-convection for physical vapor transport processes of $Hg_2Cl_2-NO$ system. For a system with the temperature difference of 20 K between an interface at the source material region and growing crystal interface, the linear temperature profiles at walls, the total molar fluxes at Ar = 2 are much greater than Ar = 5 as well as the corresponding nonuniformities in interfacial distributions due to the effect of convection. The maximum total molar flux at the gravitational acceleration of 1 $g_0$ is greater twice than at the level of 0.1 $g_0$, where g0 denotes the gravitational acceleration on earth. With increasing aspect ratio from 2 to 5, a diffusive-convection mode is transited into the diffusion mode, and then the strength of diffusion is predominant over the strength of diffusive-convection.

Time-dependent simplified spherical harmonics formulations for a nuclear reactor system

  • Carreno, A.;Vidal-Ferrandiz, A.;Ginestar, D.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3861-3878
    • /
    • 2021
  • The steady-state simplified spherical harmonics equations (SPN equations) are a higher order approximation to the neutron transport equations than the neutron diffusion equation that also have reasonable computational demands. This work extends these results for the analysis of transients by comparing of two formulations of time-dependent SPN equations considering different treatments for the time derivatives of the field moments. The first is the full system of equations and the second is a diffusive approximation of these equations that neglects the time derivatives of the odd moments. The spatial discretization of these methodologies is made by using a high order finite element method. For the time discretization, a semi-implicit Euler method is used. Numerical results show that the diffusive formulation for the time-dependent simplified spherical harmonics equations does not present a relevant loss of accuracy while being more computationally efficient than the full system.

Double-diffusive convection affected by conductive and insulating side walls during physical vapor transport of Hg2Br2

  • Kim, Geug Tae;Kwon, Moo Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.117-122
    • /
    • 2020
  • In last few decades, although thermal and/or solutal buoyancy-driven recirculating flows in a closed ampoule have been intensively studies as a model problem, there exist interesting total molar flux of Hg2Br2 that have been unreported in the literature. It is concluded that the total molar flux of Hg2Br2(A) increases linearly and directly as the temperature difference regions in the range of 10℃ ≤ ΔT ≤ 50°, 3.5 × 103 ≤ Grt ≤ 4.08 × 103, 4.94 × 104 ≤ Grs ≤ 6.87 × 104. For the range of 10 Torr ≤ PB ≤ 150 Torr, the total molar flux of Hg2Br2(A) decays second order exponentially as the partial pressure of component B (argon as an impurity), PB increases. From the view point of energy transport, the fewer the partial pressure of component B (argon), PB is, the more the energy transport is achieved.

A Numerical Study on Nonlinear Dynamic Behavior of Diffusive-Thermal Instability in Diluted CH4/O2 Conterflow Diffusion Flames (희석된 메탄/산소 대향류 확산화염에서 확산-열 불안정으로 인한 화염의 비선형 동적 거동에 관한 수치해석)

  • Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.688-696
    • /
    • 2004
  • Nonlinear dynamic behavior of diffusive-thermal instability in diluted CH$_4$/O$_2$ diffusion flames is numerically investigated by adopting detailed chemistry and transport. Counterflow diffusion flame is adopted as a model flamelet. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers greater than unity, and the instability occurs at high strain rate near extinction condition in this flame configuration. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Transient evolution of the flame depends on the initial strain rate and the amount of perturbed strain rate. Basically, the dynamic behaviors can be classified into two types, namely non-oscillatory decaying solution and diverging solution leading to extinction. The peculiar oscillatory solution, which has been found in the previous study adopting one-step chemistry and constant Lewis numbers, is net observed in this study, which is attributed to both convective flow and preferential diffusion effects.

Study on simultaneous heat and mass transfer during the physical vapor transport of Hg2Br2 under ㎍ conditions

  • Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.107-114
    • /
    • 2019
  • A computational analysis has been carried out to get a thorough and full understanding on the effects of convective process parameters on double-diffusive convection during the growth of mercurous bromide ($Hg_2Br_2$) crystals on earth and under ${\mu}g$ conditions. The dimensional maximum magnitude of velocity vector, ${\mid}U{\mid}_{max}$ decreases much drasticlly near Ar = 1, and, then since Ar = 2, decreases. The ${\mu}g$ conditions less than $10^{-2}g$ make the effect of double-diffusion convection much reduced so that adequate advective-diffusion mass transfer could be obtained.

Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments

  • Kim, Geug-Tae;Kwon, Moo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.75-80
    • /
    • 2014
  • The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form $1g_0$ down to $1.0{\times}10^{-4}g_0$, the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr. Under microgravity environments less than $1g_0$, a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of $1g_0$.

Numerical Analysis of Tip Vortex and Cavitation of Elliptic Hydrofoil with NACA 662-415 Cross Section (NACA 662-415 단면을 가지는 타원형 수중익의 날개 끝 보오텍스 및 캐비테이션 수치해석)

  • Park, Il-Ryong;Kim, Je-in;Seol, Han-Sin;Kim, Ki-Sup;Ahn, Jong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.244-252
    • /
    • 2018
  • This paper provides quantification of the effects of the turbulence model and grid refinement on the analysis of tip vortex flows by using the RANS(Reynolds averaged Navier-Stokes) method. Numerical simulations of the tip vortex flows of the NACA $66_2$-415 elliptic hydrofoil were conducted, and two turbulence models for RANS closure were tested, i.e., the Realizable $k-{\varepsilon}$ model and the Reynolds stress transport model. Numerical results were compared with available experimental data, and it was shown that the data for the Reynolds stress transport model that were computed on the finest grid system had better agreement in reproducing the development and propagation of the tip vortex. The Realizable $k-{\varepsilon}$ model overestimated the turbulence level in the vortex core and showed a diffusive behavior of the tip vortex. The tip vortex cavitation on the hydrofoil and its trajectory also showed good agreement between the current numerical results that were obtained using the Reynolds stress transport model and the results observed in the experiment.

The Characteristics of Bioremediation for VOCs in Soil Column (VOCs처리를 위한 미생물의 토양복원화 특성)

  • 손종렬;장명배
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.9-12
    • /
    • 2002
  • Diffusive transport of volatile organic compounds(VOCs) and their degradation by bacteria in unsaturated soils are couple by poorly understood mass transfer kinetics at the gas/water interface. Determination of the fate of VOCs in unsaturated soil is necessary to evaluate the feasibility of natural attenuation as a VOC remediation strategy. The objective of this study was to develop a mechanistically based mathematical model that would consider the interdependence of VOC transport, microbial activity, and sorptive interaction in a moist, unsaturated soil. Because the focus of the model was on description of natural attenuation, the advective VOC transport that is induced in engineered remediation processes such as vapor extraction was not considered. The utility of the model was assessed through its ability to describe experimental observations form diffusion experiments using toluene as a representative VOC in well-defined soil columns that contained a toluene degrading bacterium, Pseudomonas Putida, as the sole active microbial species. The coefficient for gas-liquid mass-transfer, K$\sub$LA/, was found to be a key parameter controlling the ability of bacteria to degrade VOCs. This finding indicates that soil size and geometry are likely to be important parameters in assessing the possible success of natural attenuation of VOCs in contaminated unsaturated soils.

  • PDF