Browse > Article
http://dx.doi.org/10.14478/ace.2015.1112

Effects of Aspect Ratio on Diffusive-Convection During Physical Vapor Transport of Hg2Cl2 with Impurity of NO  

Kim, Geug-Tae (Department of Advanced Materials and Chemical Engineering, Hannam University)
Publication Information
Applied Chemistry for Engineering / v.26, no.6, 2015 , pp. 746-752 More about this Journal
Abstract
This study investigates the effects of aspect ratio (transport length-to-width) on diffusive-convection for physical vapor transport processes of $Hg_2Cl_2-NO$ system. For a system with the temperature difference of 20 K between an interface at the source material region and growing crystal interface, the linear temperature profiles at walls, the total molar fluxes at Ar = 2 are much greater than Ar = 5 as well as the corresponding nonuniformities in interfacial distributions due to the effect of convection. The maximum total molar flux at the gravitational acceleration of 1 $g_0$ is greater twice than at the level of 0.1 $g_0$, where g0 denotes the gravitational acceleration on earth. With increasing aspect ratio from 2 to 5, a diffusive-convection mode is transited into the diffusion mode, and then the strength of diffusion is predominant over the strength of diffusive-convection.
Keywords
aspect ratio; physical vapor transport;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. A. Tebbe, S. K. Loyalka, and W. M. B. Duval, Finite element modeling of asymmetric and transient flowfields during physical vapor transport, Finite Elem. Anal. Des., 40, 1499-1519 (2004).   DOI
2 M. Alsaady, R. Fu, B. Li, R. Boukhanouf, and Y. Yan, Thermo-physical properties and thermo-magnetic convection of ferrofluid, Appl. Therm. Eng., 88, 14-21 (2015).   DOI
3 T. Qin, Z. Tukovic, and R. O. Grigoriev, Buoyancy-thermocapillary convection of volatile fluids under their vapors, Int. J. Heat Mass Transfer, 80, 38-49 (2015).   DOI
4 F. Rosenberger and G. Muller, Interfacial transport in crystal growth, a parameter comparison of convective effects, J. Crystal Growth, 65, 91-104 (1983).   DOI
5 S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Washington D. C., (1980).
6 B. S. Jhaveri and F. Rosenberger, Expansive Convection in Vapor Transport across Horizontal Enclosures, J. Crystal Growth, 57, 57-64 (1982).   DOI
7 G. T. Kim and M. H. Kwon, Effects of solutally dominant convection on physical vapor transport for a mixture of $Hg_2Br_2$ and $Br_2$ under microgravity environments, Korean Chem. Eng. Res., 52, 75-80 (2014).   DOI
8 N. B. Singh, M. Gottlieb, G. B. Brandt, A. M. Stewart, R. Mazelsky, and M. E. Glicksman, Growth and characterization of mercurous halide crystals: mercurous bromide system, J. Crystal Growth, 137, 155-160 (1994).   DOI
9 N. B. Singh, R. H. Hopkins, R. Mazelsky, and J. J. Conroy, Purification and growth of mercurous chloride single crystals, J. Crystal Growth, 75, 173-180 (1986).   DOI
10 S. J. Yosim and S. W. Mayer, The mercury-mercuric chloride system, J. Phys. Chem., 64, 909-911 (1960).   DOI
11 T. Yamaguchi, K. Ohtomo, S. Sato, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato, H. Tsuge, and T. Yano, Surface morphology and step instability on the (0001)C facet of physical vapor transport-grown 4H-SiC single crystal boules, J. Crystal Growth, 431, 24-31 (2015).   DOI
12 C. Ohshige, T. Takahashi, N. Ohtani, M. Katsuno, T. Fujimoto, S. Sato, H. Tsuge, T. Yano, H. Matsuhata, and M. Kitabatake, Defect formation during the initial stage of physical vapor transport growth of 4H-SiC in the (1120) direction, J. Crystal Growth, 408, 1-6 (2014).   DOI
13 J. G. Kim, J. H. Jeong, Y. Kim, Y. Makarov, and D. J. Choi, Evaluation of the change in properties caused by axial and radial Temperature gradients in silicon carbide crystal growth using the physical vapor transport method, Acta. Materialia, 77, 54-59 (2014).   DOI
14 Y. Shi, J. Yang, H. Liu, P. Dai, B. Liu, Z. Jin, and G. Qiao, Fabrication and mechanism of 6H-type silicon carbide whiskers by physical vapor transport technique, J. Crystal Growth, 349, 68-74 (2012).   DOI
15 M. A. Fanton, Q. Li, A. Y. Polyakov, and M. Skowronski, Electrical properties and deep levels spectra of bulk SiC crystals grown by hybrid physical-chemical vapor transport method, J. Crystal Growth, 300, 314-318 (2007).   DOI
16 L. Hongtao, S. Wenbin, M. Jiahua, and Z. Feng, Purification of $Cd_{0.9}Zn_{0.1}Te$ by physical vapor transport method, Mater. Lett., 59, 3837-3840 (2005).   DOI
17 K. Semmelroth, M. Krieger, G. Pensl, H. Nagasawa, R. Pusche, M. Hundhausen, L. Ley, M. Nerding, and H. P. Strunk, Growth of cubic SiC single crystals by the physical vapor transport technique, J. Crystal Growth, 308, 241-246 (2007).   DOI
18 E. R. Letts, J. S. Speck, and S. Nakamura, Effect of indium on the physical vapor transport growth of AIN, J. Crystal Growth, 311, 1060-1064 (2009).   DOI
19 J. T. Mullins, F. Dierre, and B. K. Tanner, X-ray diffraction imaging of ZnTe Crystals grown by the multi-tube physical vapour transport technique, J. Crystal Growth, 431, 61-68 (2015).
20 H. Cai, W. Wang, P. Liu, G. Wang, A. Liu, Z. He, Z. Cheng, S. Zhang, and M. Xia, Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport, J. Crystal Growth, 420, 42-46 (2015).   DOI
21 S. Jo, S. Suzuki, and M. Yoshimura, Effect of solid-state polymerization on crystal morphology of a type of polydiacetylene single crystal obtained by physical vapor transport technique," Thin Solid Films, 554, 154-157 (2014).   DOI
22 S. Collins, S. Vatavu, V. Evani, M. Khan, S. Bakhshi, V. Palekis, C. Rotaru, and C. Ferekides, Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport, Thin Solid Films, 582, 139-145 (2015).   DOI
23 S. Y. Hung, R. L. Kao, K. Y. Lin, C. C. Yang, K. S. Lin, Y. C. Chao, J. S. Wang, J. L. Shen, and K. C. Chiu, Characterization of facial and meridional $Alq_3$ thin films fabricated from physical vapor transport at high substrate temperatures, Mater. Chem. Phys., 154, 100-106 (2015).   DOI
24 M. A. Fanton, Q. Li, A. Y. Polyakov, M. Skowronski, R. Cavalero, and R. Ray, Effects of Hydrogen on the Properties of SiC Crystals Grown by Physical Vapor Transport: Thermodynamic Considerations and Experimental Results, J. Crystal Growth, 287, 339-343 (2006).   DOI
25 A. Choubey, P. Veeramani, A. T. G. Pym, J. T. Mullins, P. J. Sellin, A. W. Brinkman, I. Radley, A. Basu, and B. K. Tanner, Growth by the Multi-tube Physical Vapour Transport Method and Characterization of Bulk (Cd, Zn)Te, J. Crystal Growth, 352, 120-123 (2012).   DOI
26 Y. Shi, J. F. Yang, H. Liu, P. Dai, B. Liu, Z. Jin, G. Qiao, and H. Li, Fabrication and Mechanism of 6H-type Silicon Carbide Whiskers by Physical Vapor Transport Technique, J. Crystal Growth, 349, 68-74 (2012).   DOI
27 N. Zotov, S. Baumann, W. A. Meulenberg, and R. Vassen, La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition, J. Membrane Sci., 442, 119-123 (2013).   DOI
28 C. H. Su, M. A. George, W. Palosz, S. Feth, and S. L. Lehoczky, Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport, J. Crystal Growth, 213, 267-275 (2000).   DOI
29 C. Paorici, C. Razzetti, M. Zha, L. Zanotti, L. Carotenuto, and M. Ceglia, Physical Vapour Transport of Urotropine: One-Dimensional Model, Mater. Chem. and Phys., 66, 132-137 (2000).   DOI
30 A. Nadarajah, F. Rosenberger, and J. Alexander, Effects of buoyancy- driven flow and thermal boundary conditions on physical vapor transport, J. Crystal Growth, 118, 49-59 (1992).   DOI
31 F. Rosenberger, J. Ouazzani, I. Viohl, and N. Buchan, Physical vapor transport revised, J. Crystal Growth, 171, 270-287 (1997).   DOI