Browse > Article
http://dx.doi.org/10.9713/kcer.2014.52.1.75

Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments  

Kim, Geug-Tae (Department of Chemical Engineering, Hannam University)
Kwon, Moo Hyun (Department of Applied Chemistry, Woosuk University)
Publication Information
Korean Chemical Engineering Research / v.52, no.1, 2014 , pp. 75-80 More about this Journal
Abstract
The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form $1g_0$ down to $1.0{\times}10^{-4}g_0$, the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr. Under microgravity environments less than $1g_0$, a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of $1g_0$.
Keywords
Solutally Dominant Convection; Microgravity Environment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Duval, W. M. B., Glicksman, N. E. and Singh, B., "Physical Vapor Transport of Mercurous Chloride Crystals; Design of a Microgravity Experiment," J. Cryst. Growth, 174, 120-129(1997).   DOI
2 Tebbe, P. A., Loyalka, S. K. and Duval, W. M. B., "Finite Element Modeling of Asymmetric and Transient Flow Fields during Physical Vapor Transport," Finite Elements in Analysis and Design, 40, 1499-1519(2004).   DOI   ScienceOn
3 Kim, G. T., Duval, W. M. B., Singh, N. B. and Glickman, M. E., "Thermal Convective Effects on Physical Vapor Transport Growth of Mercurous Chloride Crystals ($Hg_2C1_2$) for Axisymmetric 2-D Cylindrical Enclosure," Model. Simul. Mater. Sci. Eng., 3, 331-357(1995).   DOI   ScienceOn
4 Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Thermal Convection in Physical Vapour Transport of Mercurous Chloride ($Hg_2C1_2$) for Rectangular Enclosures," Model. Simul. Mater. Sci. Eng., 5, 289-309(1997).   DOI   ScienceOn
5 Kim, G. T., Duval, W. M. B. and Glickman, M. E., "Effects of Asymmetric Temperature Profiles on Thermal Convection during Physical Vapor Transport of $Hg_2C1_2$," Chem. Eng. Comm., 162, 45-61 (1997).   DOI   ScienceOn
6 Rosenberger, F. and Muller, G., "Interfacial Transport in Crystal Growth, a Parameter Comparison of Convective Effects," J. Cryst. Growth, 65, 91-104(1983).   DOI   ScienceOn
7 Choubey, A., Veeramani, P., Pym, A. T. G., Mullins, J. T., Sellin, P. J., Brinkman, A. W., Radley, I., Basu, A. and Tanner, B. K., "Growth by the Multi-tube Physical Vapour Transport Method and Characterization of Bulk (Cd, Zn)Te," J. Cryst. Growth, 352, 120-123(2012).   DOI
8 Shi, Y., Yang, J. F., Liu, H., Dai, P., Liu, B., Jin, Z., Qiao, G. and Li, H., "Fabrication and Mechanism of 6H-type Silicon Carbide Whiskers by Physical Vapor Transport Technique," J. Cryst. Growth, 349, 68-74(2012).   DOI
9 Zotov, N., Baumann, S., Meulenberg, W. A. and VaBen, R., "La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition," J. Membr. Sci., 442, 119-123(2013).   DOI
10 Fanton, M. A., Li, Q., Polyakov, A. Y., Skowronski, M., Cavalero, R. and Ray, R., "Effects of Hydrogen on the Properties of SiC Crystals Grown by Physical Vapor Transport: Thermodynamic Considerations and Experimental Results," J. Cryst. Growth, 287, 339-343(2006).   DOI
11 Su, C. H., George, M. A., Palosz, W., Feth, S. and Lehoczky, S. L., "Contactless Growth of ZnSe Single Crystals by Physical Vapor Transport," J. Cryst. Growth, 213, 267-275(2000).   DOI
12 Paorici, C., Razzetti, C., Zha, M., Zanotti, L., Carotenuto, L. and Ceglia, M., "Physical Vapour Transport of Urotropine: One-Dimensional Model," Mater. Chem. Phys., 66, 132-137(2000).   DOI
13 Markham, B. L. and Rosenberger, F., "Diffusive-Convective Vapor Transport across Horizontal and Inclined Rectangular Enclosures," J. Cryst. Growth, 67, 241-254(1984).   DOI   ScienceOn
14 Lee, Y. K. and Kim, G. T., "Effects of Convection on Physical Vapor Transport of $Hg_2Cl_2$ in the Presence of Kr- Part I: Under Microgravity Environments," J. Korean Crystal Growth and Crystal Tech., 23, 20-26(2013).   과학기술학회마을   DOI
15 Markham, B. L., Greenwell, D. W. and Rosenberger, F., "Numerical Modeling of Diffusive-Convective Physical Vapor Transport in Cylindrical Vertical Ampoules," J. Cryst. Growth, 51, 426-437 (1981).   DOI   ScienceOn
16 Jhaveri, B. S. and Rosenberger, F., "Expansive Convection in Vapor Transport across Horizontal Enclosures," J. Cryst. Growth, 57, 57-64(1982).   DOI   ScienceOn
17 Nadarajah, A., Rosenberger, F. and Alexander, J., "Effects of Buoyancy-Driven Flow and Thermal Boundary Conditions on Physical Vapor Transport," J. Cryst. Growth, 118, 49-59(1992).   DOI
18 Zhou, H., Zebib, A., Trivedi, S. and Duval, W. M. B., "Physical Vapor Transport of Zinc-Telluride by Dissociative Sublimation," J. Cryst. Growth, 167, 534-542(1996).   DOI
19 Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-I: Thermal Convection," J. Mater. Proc. Manufacturing Sci., 1, 83-104(1992).
20 Duval, W. M. B., "Convective Effects during the Physical Vapor Transport Process-II: Thermosolutal Convection," J. Mater. Proc. Manufacturing Sci., 1, 295-313(1993).
21 Greenwell, D. W., Markham, B. L. and Rosenberger, F., "Numerical Modeling of Diffusive Physical Vapor Transport in Cylindrical Ampoules," J. Cryst. Growth, 51, 413-425(1981).   DOI   ScienceOn