• 제목/요약/키워드: Sub-50nm

검색결과 315건 처리시간 0.025초

BiNbO4:RE3+ (RE = Dy, Eu, Sm, Tb) 형광체의 광학 특성 (Photoluminescence Properties of BiNbO4:RE3+ (RE = Dy, Eu, Sm, Tb) Phosphors)

  • 이상운;조신호
    • 한국표면공학회지
    • /
    • 제50권3호
    • /
    • pp.206-211
    • /
    • 2017
  • $BiNbO_4:RE^{3+}$ (RE = Dy, Eu, Sm, Tb) phosphors were prepared by solid-state reaction at $1100^{\circ}C$ and their structural, photoluminescent, and morphological properties were investigated. XRD patterns exhibited that all the synthesized phosphors exhibited a triclinic system with a dominant (210) diffraction peak, irrespective of the type of activator ions. The surface morphologies of rare-earth-ion-doped $BiNbO_4$ phosphors were found to depend strongly on the type of activator ions. The $Eu^{3+}$ and $Dy^{3+}$ doped $BiNbO_4$ phosphors revealed a strong red (613 nm) emission resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ and a dominant yellow (575 nm) emission originating from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ respectively, which were the electric dipole transitions, indicating that the activator ions occupy sites of non-inversion symmetry in the $BiNbO_4$ phosphor. The main reddish-orange emission spectra of $Sm^{3+}$-doped $BiNbO_4$ phosphors were due to the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ (607 nm) magnetic dipole transition, indicating that the $Sm^{3+}$ ions were located at inversion symmetry sites in the $BiNbO_4$ host lattice. As for $Tb^{3+}$-doped phosphors, green emission was obtained under excitation at 353 nm and its CIE chromaticity coordinates were (0.274, 0.376). These results suggest that multicolor emission can be achieved by changing the type of activator ions incorporated into the $BiNbO_4$ host crystal.

기계적 밀링 공정에 의해 제조된 Al-B4C 복합분말의 밀링 거동 연구 (Milling Behaviors of Al-B4C Composite Powders Fabricated by Mechanical Milling Process)

  • 홍성모;박진주;박은광;이민구;이창규;김주명;이진규
    • 한국분말재료학회지
    • /
    • 제19권4호
    • /
    • pp.291-296
    • /
    • 2012
  • In the present work, Al-$B_4C$ composite powders were fabricated using a mechanical milling process and its milling behaviors and mechanical properties as functions of $B_4C$ sizes ( $100{\mu}m$, 500 nm and 50 nm) and concentrations (1, 3 and 10 wt.%) were investigated. For achieving it, composite powders and their compacts were fabricated using a planetary ball mill machine and magnetic pulse compaction technology. Al-$B_4C$ composite powders represent the most uniform dispersion at a milling speed of 200 rpm and a milling time of 240 minutes. Also, the smaller $B_4C$ particles were presented, the more excellent compositing characteristics are exhibited. In particular, in the case of the 50 nm $B_4C$ added compact, it showed the highest values of compaction density and hardness compared with the conditions of $100{\mu}m$ and 500 nm additions, leading to the enhancement its mechanical properties.

액상법에 의한 가시광감응성 티타니아 나노튜브의 제조 (Preparation of Visible-light Active TiO2 Nanotubes by Solution Method)

  • 이현미;소원욱;백진욱;공기정;문상진
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.182-185
    • /
    • 2012
  • $TiCl_4$와 히드라진/암모니아수를 사용하여 졸겔 및 강알칼리 수열합성법의 신규 2단 합성법을 통해 N도핑된 $TiO_2$ 나노튜브를 제조하였다. 제조된 나노튜브는 튜브형상의 손상이 없이 10 nm 전후의 직경과 3 nm 이하의 벽두께를 가지며, 잘발달된 아나타제 결정상을 나타내었다. 또한 N이 도핑되어 일반 도핑되지 않은 $TiO_2$ 나노튜브와 아나타제상입자에 비해 각각 ~35 nm, ~25 nm 정도 적색편이 된 우수한 가시광 흡수능과 노란색 색상을 보여 주었다.

다중준위 상변환 메모리를 위한 Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 구조의 전기적 특성 연구 (A Study on the Electrical Characteristics of Ge2Sb2Te5/Ti/W-Ge8Sb2Te11 Structure for Multi-Level Phase Change Memory)

  • 오우영;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.44-49
    • /
    • 2022
  • In this paper, we investigated current (I)- and voltage (V)-sweeping properties in a double-stack structure, Ge2Sb2Te5/Ti/W-doped Ge8Sb2Te11, a candidate medium for applications to multilevel phase-change memory. 200-nm-thick and W-doped Ge2Sb2Te5 and W-doped Ge8Sb2Te11 films were deposited on p-type Si(100) substrate using magnetron sputtering system, and the sheet resistance was measured using 4 point-probe method. The sheet resistance of amorphous-phase W-doped Ge8Sb2Te11 film was about 1 order larger than that of Ge2Sb2Te5 film. The I- and V-sweeping properties were measured using sourcemeter, pulse generator, and digital multimeter. The speed of amorphous-to-multilevel crystallization was evaluated from a graph of resistance vs. pulse duration (t) at a fixed applied voltage (12 V). All the double-stack cells exhibited a two-step phase change process with the multilevel memory states of high-middle-low resistance (HR-MR-LR). In particular, the stable MR state is required to guarantee the reliability of the multilevel phase-change memory. For the Ge2Sb2Te5 (150 nm)/Ti (20 nm)/W-Ge8Sb2Te11 (50 nm), the phase transformations of HR→MR and MR→LR were observed at t<30ns and t<65ns, respectively. We believe that a high speed and stable multilevel phase-change memory can be optimized by the double-stack structure of proper Ge-Sb-Te films separated by a barrier metal (Ti).

Bebq2에 (pq)2Ir(acac)가 선택 도핑된 2-파장 유기발광다이오드 (2-Wavelength Organic Light-Emitting Diodes Using Bebq2 Selectively Doped with (pq)2Ir(acac))

  • 김민영;지현진;장지근
    • 한국재료학회지
    • /
    • 제21권4호
    • /
    • pp.212-215
    • /
    • 2011
  • New organic light-emitting diodes with structure of indium-tin-oxide[ITO]/N,N'-diphenyl-N, N'-bis-[4-(phenyl-m-tolvlamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-poly-aminophenyl) cyclohexane[TAPC]/bis(10-hydroxy-benzo(h)quinolinato)beryllium[Bebq2]/Bebq2:iridium(III)bis(2-phenylquinoline-N,C2')acetylacetonate[(pq)2Ir(acac)]/ET-137[electron transport material from SFC Co]/LiF/Al using the selective doping of 5%-(pq)2Ir(acac) in a single Bebq2 host in the two wavelength (green, orange) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of Bebq2, two kinds of devices with the doped emitter thicknesses of 20${\AA}$ and 40${\AA}$ in the Bebq2:(pq)2Ir(acac) were fabricated. The device with a 20${\AA}$-thick doped emitter is referred to as "D-1" and the device with a 4${\AA}$-thick doped emitter is referred to as "D-2". Under an applied voltage of 9V, the luminance of D-1 and D-2 were 7780 $cd/m^2$ and 6620 $cd/m^2$, respectively. The electroluminescent spectrum of each fabricated device showed peak emissions at the same two wavelengths: 508 nm and 596 nm. However, the relative intensity of 596 nm to 508 nm at those wavelengths was higher in the D-2 than in the D-1. The D-1 and D-2 devices showed maximum current efficiencies of 5.2 cd/A and 6.0 cd/A, and color coordinates of (0.31, 0.50) and (0.37, 0.48) on the Commission Internationale de I'Eclairage[CIE] chart, respectively.

Efficient excitation and amplification of the surface plasmons

  • Iqbal, Tahir
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1381-1387
    • /
    • 2018
  • One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).

SiO2 버퍼층을 갖는 PET 기판위에 증착한 IZTO 박막의 전기적 및 광학적 특성 (Electrical and Optical Properties of the IZTO Thin Film Deposited on PET Substrates with SiO2 Buffer Layer)

  • 박종찬;정양희;강성준
    • 한국정보통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.578-584
    • /
    • 2017
  • PET (Polyethylene terephthalate) 플라스틱 기판 위에 IZTO (In-Zn-Sn-O) 박막을 증착하기 전에, $SiO_2$ 버퍼층을 전자빔 증착 방법으로 100 nm 의 두께로 증착하였다. IZTO 박막은 RF 마그네트론 스퍼터링법으로 RF 파워는 30~60 W 로, 공정 압력은 1~7 mTorr 로 변화시켜가며 $SiO_2$/PET 에 증착하여 IZTO 박막의 구조적, 전기적, 광학적 특성을 분석하였다. RF 파워 50 W 와 공정 압력 3 mTorr 에서 증착한 IZTO 박막이 $4.53{\times}10^{-3}{\Omega}$ 의 제일 큰 재료평가지수와 이때 $4.42{\times}10^{-4}{\Omega}-cm$ 의 비저항과 $27.63{\Omega}/sq.$ 의 면저항으로 가장 우수한 전기적 특성을 보였고, 가시광 영역 (400~800 nm) 에서의 평균 투과도도 81.24 % 로 가장 큰 값을 나타내었다. AFM 으로 IZTO 박막의 표면 형상을 관찰한 결과, 모든 IZTO 박막이 핀홀이나 크랙 같은 결함이 없는 표면을 가지며, RF 파워 50 W 와 공정 압력 3 mTorr에서 증착한 박막이 1.147 nm 의 가장 작은 표면 거칠기를 나타내었다. 이로부터 $SiO_2$/PET 구조위에 증착한 IZTO 박막이 차세대 플렉시블 디스플레이 소자에 응용될 수 있는 매우 유망한 재료임을 알 수 있었다.

Fe73.5Cu1Nb3Si15.5B7나노 결정립 합금 분말 코아의 자기적 특성 (The Magnetic Properties of Nanocrystalline Fe73.5Cu1Nb3Si15.5B7 Alloy Powder Cores)

  • 노태환;최혁열;안상재
    • 한국자기학회지
    • /
    • 제14권1호
    • /
    • pp.7-12
    • /
    • 2004
  • F $e_{73.5}$C $u_1$N $b_3$S $i_{15.5}$ $B_{7}$ 비정질 리본 합금을 490∼61$0^{\circ}C$의 온도 범위에서 열처리하고 이를 볼 밀링 하여 얻은 250∼850$\mu\textrm{m}$크기의 자성분말과 5wt%의 세라믹 절연체로 구성된 분말 코아의 자기적 특성에 열처리 온도가 미치는 영향을 조사하였다. 5$50^{\circ}C$에서 1 h동안 열처리하여 직경 11 nm의 $\alpha$-Fe상 나노 결정립 구조로 되었을 때(전기비저항은 110$\mu$$.$cm)가장 높은 실효투자율 및 품질계수를 나타내었으며 그 값은 각각 125와 53이었고, 실효투자율의 경우 약 500 KHz에 이르기까지 일정한 크기를 유지하였다. 그리고 이 열처리 조건에서 230 mW/㎤(f=50 KHz, $B_{m}$ =0.1 T)의 대단히 낮은 자심손실을 나타내었다. 그러나 이 합금의 분말 코아는 종래의 분말 코아 재료(MPP,센더스트 등)에 비해 그리 우수하지 못한 직류 바이어스 특성 특히 저 자장 하에서의 낮은 퍼센트 투자율을 나타내었는데, 이는 종래의 소재와 유사한 투자율을 얻는데 너무 큰 입도의 분말이 필요한 것에 그 원인이 있는 것으로 이해되었다.

Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles

  • Rashad, M.;Tekin, H.O.;Zakaly, Hesham MH.;Pyshkina, Mariia;Issa, Shams A.M.;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2078-2084
    • /
    • 2020
  • Magnesium oxide (MgO) and Zinc oxide (ZnO) nanoparticles (NPs) have been successfully synthesized by solid-solid reaction method. The structural properties of ZnO and MgO NPs were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results indicated a formation of pure MgO and ZnO NPs. The mean diameter values of the agglomerated particles were around to be 70 and 50 nm for MgO and ZnO NPs, respectively using SEM analysis. Further, a wide-range of nuclear radiation shielding investigation for gamma-ray and fast neutrons have been studied for Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. FLUKA and Microshield codes have been employed for the determination of mass attenuation coefficients (μm) and transmission factors (TF) of Magnesium oxide (MgO) and Zinc oxide (ZnO) samples. The calculated values for mass attenuation coefficients (μm) were utilized to determine other vital shielding properties against gamma-ray radiation. Moreover, the results showed that Zinc oxide (ZnO) nanoparticles with the lowest diameter value as 50 nm had a satisfactory capacity in nuclear radiation shielding.

WO3-CuO의 수소환원거동에 미치는 볼 밀링의 영향 (Effect of Ball-milling on Hydrogen-reduction Behavior of WO3-CuO)

  • 김대건;심우석;김영도
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.631-634
    • /
    • 2003
  • To fabricate W-Cu nanocomposite powder, $WO_3$-CuO powder mixture was high-energetically ball-milled and subsequently hydrogen-reduced. The effect of ball-milling on the hydrogen-reduction behavior of$ WO_3$-CuO was investigated with non-isothermal hygrometric analysis during hydrogen-reduction. Increasing the ball-milling time, the reduction peak temperatures of humidity curves were shifted to low temperature. It was considered that the reduction temperature should be decreased because the specific surface area of each oxide considerably increased with increasing the ball-milling time. In case of ball-milling for 0 h, $WO_3$and CuO were independently hydrogen-reduced and W particles were nucleated on the surface of Cu adjacent to W by CVT. However, in case of ball-milling for 50 h, the aggregates of about 200-300 nm were observed. W particles of size below 30-50 nm were homogeneously distributed with Cu in the aggregates.