Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.024

Efficient excitation and amplification of the surface plasmons  

Iqbal, Tahir (Department of Physics, Faculty of Science, University of Gujrat)
Abstract
One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).
Keywords
Gallium phosphate (GaP); Surface plasmons (SPs); One dimensional (1D) grating; COMSOL RF module; Amplified spontaneous emission;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Iqbal, S. Afsheen, Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate, Curr. Appl. Phys. 16 (2016) 453-458.   DOI
2 T. Iqbal, S. Afsheen, Plasmonic Band gap: role of the slit width in 1D metallic grating on higher refractive index substrate, Plasmonics 11 (2016) 885-893.   DOI
3 T. Iqbal, S. Afsheen, One dimensional plasmonic grating: high sensitive biosensor, Plasmonics 12 (2017) 19-25.   DOI
4 A.D. Boardman, Electromagnetic Surface Modes, Wiley, New York, 1982.
5 C. Kittel, Introduction to Solid State Physics, eighth ed., John Wiley & Sons, Inc., NewYork, USA, 2005.
6 M. Javaid, T. Iqbal, Plasmonic bandgap in 1D metallic nanostructured devices, Plasmonics (2015), https://doi.org/10.1007/s11468-015-0025-0.   DOI
7 A.V. Zayats, I.I. Smolyaninov, Near-field photonics: surface plasmon polaritons and localized surface plasmons, J. Optic. Pure Appl. Optic. 5 (2003) S16-S50.   DOI
8 V.M. Agranovich, D.L. Mills, Surface Polaritons, North-Holland, Amsterdam, 1982.
9 B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D.W. Pohl, Local excitation, scattering, and interference of surface plasmons, Phys. Rev. Lett. 77 (1996) 1889-1893.   DOI
10 R.H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. B 106 (1957) 874-881.   DOI
11 J. Pendry, Playing tricks with light, Science 285 (1999) 1687-1688.   DOI
12 K. Kneipp, et al., Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78 (1997) 1667-1670.   DOI
13 K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface enhanced Raman scattering and biophysics, J. Phys. Chem. 14 (2002) R597-R624.
14 S.M. Nie, S.R. Emery, Probing single molecules and single nanoparticles by surfaceenhanced Raman scattering, Science 275 (1997) 1102-1106.   DOI
15 S. Vempati, T. Iqbal, S. Afsheen, Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating, J. Appl. Phys. 118 (2015) 043103-043106.   DOI
16 J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sensor. Actuator. B Chem. 54 (1999) 3-15.   DOI
17 H. Raether, Surface-plasmons on Smooth and Rough Surfaces and on Gratings, Springer, 1988.
18 M. Celebrano, et al., Efficient coupling of single photons to single plasmons, Optic Express 18 (2010) 13829-13835.   DOI
19 R. Mehfuz, M.W. Maqsood, K.J. Chau, Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering, Optic Express 18 (2010) 18206-18216.   DOI
20 A.-L. Baudrion, et al., Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film, Optic Express 16 (2008) 3420-3429.   DOI
21 P. Lalanne, J.P. Hugonin, J.C. Rodier, Theory of surface plasmon generation at nanoslit apertures, Phys. Rev. Lett. 95 (2005) 263902-263905.   DOI
22 H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Two-dimensional optics with surface plasmon polaritons, Appl. Phys. Lett. 81 (2002) 1762-1764.   DOI
23 P. Lalanne, J.P. Hugonin, Interaction between optical nano-objects at metallo-dielectric interfaces, Nat. Phys. 2 (2006) 551-556.   DOI
24 F. Lopez-Tejeira, et al., Efficient unidirectional nanoslit couplers for surface plasmons, Nat. Phys. 3 (2007) 324-328.   DOI
25 J. Wen, et al., Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas, Appl. Phys. Lett. 98 (2011) 101109-101111.   DOI
26 E.D. Palik, Handbook of Optical Constants of Solids, Academic Press. Inc., New york, 1985.
27 I.P. Radko, et al., Efficiency of local surface plasmon polariton excitation on ridges, Phys. Rev. B 78 (2008) 115115-115121.   DOI
28 H. Ditlbacher, J.R. Krenn, A. Hohenau, A. Leitner, F.R. Aussenegg, Efficiency of local light-plasmon coupling, Appl. Phys. Lett. 83 (2003) 3665-3667.   DOI
29 J.R. Sambles, G.W. Bradbery, F.Z. Yang, Optical excitation of surface plasmons: an introduction, Contemp. Phys. 32 (1991) 173-183.   DOI
30 E. Popov, et al., Surface plasmon excitation on a single subwavelength hole in a metallic sheet, Appl. Optic. 44 (2005) 2332-2337.   DOI
31 E.A. Stern, R.A. Ferrell, Surface plasma oscillations of a degenerate electron gas, Phys. Rev. B 120 (1960) 130-136.   DOI
32 E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturforsch. A 23 (1968) 2135-2136.   DOI
33 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin, 1988.
34 A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys. 216 (1968) 398-410.   DOI
35 H. Ditlbacher, et al., Fluorescence imaging of surface plasmon fields, Appl. Phys. Lett. 80 (2002) 404-406.   DOI
36 R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction, Phys. Rev. Lett. 21 (1968) 1530.   DOI
37 C. Billaudeau, S. Collin, F. Pardo, N. Bardou, J.-L. Pelouard, Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides, Optic Express 17 (2009) 3490-3499.   DOI
38 Y. Oshikane, et al., Observation of nanostructure by scanning near-field optical microscope with small sphere probe, Sci. Technol. Adv. Mater. 8 (2007) 181-185.   DOI
39 C.M. User Guide: RF Module, (2008).
40 E.D. Palik, Handbook of Optical Constants of Solids, Academic Press, Inc., 1985.
41 A.R. Zakharian, J.V. Moloney, M. Mansuripur, Surface plasmon polaritons on metallic surfaces, Optic Express 15 (2007) 183-197.   DOI
42 A. Hessel, A.A. Oliner, A new theory of wood's anomalies on optical gratings, Appl. Optic. 4 (1965) 1275-1297.   DOI
43 T. Iqbal, S. Afsheen, Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling, Plasmonics 11 (2016) 1247-1256.   DOI
44 T. Iqbal, Coupling efficiency of surface plasmon polaritons excited by 1D metallic gratings: far-and near-field analysis, Plasmonics 12 (2017) 215-221.   DOI