DOI QR코드

DOI QR Code

Efficient excitation and amplification of the surface plasmons

  • Iqbal, Tahir (Department of Physics, Faculty of Science, University of Gujrat)
  • Received : 2018.03.01
  • Accepted : 2018.07.30
  • Published : 2018.11.30

Abstract

One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).

Keywords

References

  1. C. Kittel, Introduction to Solid State Physics, eighth ed., John Wiley & Sons, Inc., NewYork, USA, 2005.
  2. M. Javaid, T. Iqbal, Plasmonic bandgap in 1D metallic nanostructured devices, Plasmonics (2015), https://doi.org/10.1007/s11468-015-0025-0.
  3. A.V. Zayats, I.I. Smolyaninov, Near-field photonics: surface plasmon polaritons and localized surface plasmons, J. Optic. Pure Appl. Optic. 5 (2003) S16-S50. https://doi.org/10.1088/1464-4258/5/4/353
  4. A.D. Boardman, Electromagnetic Surface Modes, Wiley, New York, 1982.
  5. V.M. Agranovich, D.L. Mills, Surface Polaritons, North-Holland, Amsterdam, 1982.
  6. R.H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. B 106 (1957) 874-881. https://doi.org/10.1103/PhysRev.106.874
  7. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D.W. Pohl, Local excitation, scattering, and interference of surface plasmons, Phys. Rev. Lett. 77 (1996) 1889-1893. https://doi.org/10.1103/PhysRevLett.77.1889
  8. J. Pendry, Playing tricks with light, Science 285 (1999) 1687-1688. https://doi.org/10.1126/science.285.5434.1687
  9. K. Kneipp, et al., Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78 (1997) 1667-1670. https://doi.org/10.1103/PhysRevLett.78.1667
  10. S.M. Nie, S.R. Emery, Probing single molecules and single nanoparticles by surfaceenhanced Raman scattering, Science 275 (1997) 1102-1106. https://doi.org/10.1126/science.275.5303.1102
  11. S. Vempati, T. Iqbal, S. Afsheen, Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating, J. Appl. Phys. 118 (2015) 043103-043106. https://doi.org/10.1063/1.4927269
  12. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sensor. Actuator. B Chem. 54 (1999) 3-15. https://doi.org/10.1016/S0925-4005(98)00321-9
  13. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface enhanced Raman scattering and biophysics, J. Phys. Chem. 14 (2002) R597-R624.
  14. H. Raether, Surface-plasmons on Smooth and Rough Surfaces and on Gratings, Springer, 1988.
  15. M. Celebrano, et al., Efficient coupling of single photons to single plasmons, Optic Express 18 (2010) 13829-13835. https://doi.org/10.1364/OE.18.013829
  16. R. Mehfuz, M.W. Maqsood, K.J. Chau, Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering, Optic Express 18 (2010) 18206-18216. https://doi.org/10.1364/OE.18.018206
  17. A.-L. Baudrion, et al., Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film, Optic Express 16 (2008) 3420-3429. https://doi.org/10.1364/OE.16.003420
  18. E. Popov, et al., Surface plasmon excitation on a single subwavelength hole in a metallic sheet, Appl. Optic. 44 (2005) 2332-2337. https://doi.org/10.1364/AO.44.002332
  19. H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Two-dimensional optics with surface plasmon polaritons, Appl. Phys. Lett. 81 (2002) 1762-1764. https://doi.org/10.1063/1.1506018
  20. P. Lalanne, J.P. Hugonin, Interaction between optical nano-objects at metallo-dielectric interfaces, Nat. Phys. 2 (2006) 551-556. https://doi.org/10.1038/nphys364
  21. F. Lopez-Tejeira, et al., Efficient unidirectional nanoslit couplers for surface plasmons, Nat. Phys. 3 (2007) 324-328. https://doi.org/10.1038/nphys584
  22. P. Lalanne, J.P. Hugonin, J.C. Rodier, Theory of surface plasmon generation at nanoslit apertures, Phys. Rev. Lett. 95 (2005) 263902-263905. https://doi.org/10.1103/PhysRevLett.95.263902
  23. J. Wen, et al., Experimental cross-polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas, Appl. Phys. Lett. 98 (2011) 101109-101111. https://doi.org/10.1063/1.3564904
  24. I.P. Radko, et al., Efficiency of local surface plasmon polariton excitation on ridges, Phys. Rev. B 78 (2008) 115115-115121. https://doi.org/10.1103/PhysRevB.78.115115
  25. H. Ditlbacher, J.R. Krenn, A. Hohenau, A. Leitner, F.R. Aussenegg, Efficiency of local light-plasmon coupling, Appl. Phys. Lett. 83 (2003) 3665-3667. https://doi.org/10.1063/1.1625107
  26. J.R. Sambles, G.W. Bradbery, F.Z. Yang, Optical excitation of surface plasmons: an introduction, Contemp. Phys. 32 (1991) 173-183. https://doi.org/10.1080/00107519108211048
  27. E.D. Palik, Handbook of Optical Constants of Solids, Academic Press. Inc., New york, 1985.
  28. E.A. Stern, R.A. Ferrell, Surface plasma oscillations of a degenerate electron gas, Phys. Rev. B 120 (1960) 130-136. https://doi.org/10.1103/PhysRev.120.130
  29. E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light, Z. Naturforsch. A 23 (1968) 2135-2136. https://doi.org/10.1515/zna-1968-1247
  30. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Phys. 216 (1968) 398-410. https://doi.org/10.1007/BF01391532
  31. H. Ditlbacher, et al., Fluorescence imaging of surface plasmon fields, Appl. Phys. Lett. 80 (2002) 404-406. https://doi.org/10.1063/1.1435410
  32. R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction, Phys. Rev. Lett. 21 (1968) 1530. https://doi.org/10.1103/PhysRevLett.21.1530
  33. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin, 1988.
  34. Y. Oshikane, et al., Observation of nanostructure by scanning near-field optical microscope with small sphere probe, Sci. Technol. Adv. Mater. 8 (2007) 181-185. https://doi.org/10.1016/j.stam.2007.02.013
  35. C.M. User Guide: RF Module, (2008).
  36. E.D. Palik, Handbook of Optical Constants of Solids, Academic Press, Inc., 1985.
  37. C. Billaudeau, S. Collin, F. Pardo, N. Bardou, J.-L. Pelouard, Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides, Optic Express 17 (2009) 3490-3499. https://doi.org/10.1364/OE.17.003490
  38. A.R. Zakharian, J.V. Moloney, M. Mansuripur, Surface plasmon polaritons on metallic surfaces, Optic Express 15 (2007) 183-197. https://doi.org/10.1364/OE.15.000183
  39. A. Hessel, A.A. Oliner, A new theory of wood's anomalies on optical gratings, Appl. Optic. 4 (1965) 1275-1297. https://doi.org/10.1364/AO.4.001275
  40. T. Iqbal, S. Afsheen, Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling, Plasmonics 11 (2016) 1247-1256. https://doi.org/10.1007/s11468-015-0168-z
  41. T. Iqbal, Coupling efficiency of surface plasmon polaritons excited by 1D metallic gratings: far-and near-field analysis, Plasmonics 12 (2017) 215-221. https://doi.org/10.1007/s11468-016-0252-z
  42. T. Iqbal, S. Afsheen, One dimensional plasmonic grating: high sensitive biosensor, Plasmonics 12 (2017) 19-25. https://doi.org/10.1007/s11468-016-0223-4
  43. T. Iqbal, S. Afsheen, Extraordinary optical transmission: role of the slit width in 1D metallic grating on higher refractive index substrate, Curr. Appl. Phys. 16 (2016) 453-458. https://doi.org/10.1016/j.cap.2016.01.005
  44. T. Iqbal, S. Afsheen, Plasmonic Band gap: role of the slit width in 1D metallic grating on higher refractive index substrate, Plasmonics 11 (2016) 885-893. https://doi.org/10.1007/s11468-015-0122-0

Cited by

  1. Optimization of 1D Silver Grating Devices for Extraordinary Optical Transmission vol.14, pp.5, 2018, https://doi.org/10.1007/s11468-018-00898-2
  2. Modeling of 1D Au plasmonic grating as efficient gas sensor vol.6, pp.12, 2018, https://doi.org/10.1088/2053-1591/ab553b
  3. Analytical Study of TM-Polarized Surface Plasmon Polaritons in Nonlinear Multi-Layer Graphene-Based Waveguides vol.16, pp.3, 2018, https://doi.org/10.1007/s11468-020-01336-y
  4. Modified Ag nanoparticles on the regular array structure to improve the optical properties vol.243, pp.None, 2022, https://doi.org/10.1016/j.jlumin.2021.118684