DOI QR코드

DOI QR Code

Milling Behaviors of Al-B4C Composite Powders Fabricated by Mechanical Milling Process

기계적 밀링 공정에 의해 제조된 Al-B4C 복합분말의 밀링 거동 연구

  • Hong, Sung-Mo (Division of Advanced Materials Engineering, Kongju National University) ;
  • Park, Jin-Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Park, Eun-Kwang (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Min-Ku (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Chang-Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Ju-Myoung (Nano Technology Inc.) ;
  • Lee, Jin-Kyu (Division of Advanced Materials Engineering, Kongju National University)
  • 홍성모 (공주대학교 신소재공학부) ;
  • 박진주 (한국원자력연구원 원자력재료개발부) ;
  • 박은광 (한국원자력연구원 원자력재료개발부) ;
  • 이민구 (한국원자력연구원 원자력재료개발부) ;
  • 이창규 (한국원자력연구원 원자력재료개발부) ;
  • 김주명 (나노기술(주)) ;
  • 이진규 (공주대학교 신소재공학부)
  • Received : 2012.07.12
  • Accepted : 2012.08.07
  • Published : 2012.08.28

Abstract

In the present work, Al-$B_4C$ composite powders were fabricated using a mechanical milling process and its milling behaviors and mechanical properties as functions of $B_4C$ sizes ( $100{\mu}m$, 500 nm and 50 nm) and concentrations (1, 3 and 10 wt.%) were investigated. For achieving it, composite powders and their compacts were fabricated using a planetary ball mill machine and magnetic pulse compaction technology. Al-$B_4C$ composite powders represent the most uniform dispersion at a milling speed of 200 rpm and a milling time of 240 minutes. Also, the smaller $B_4C$ particles were presented, the more excellent compositing characteristics are exhibited. In particular, in the case of the 50 nm $B_4C$ added compact, it showed the highest values of compaction density and hardness compared with the conditions of $100{\mu}m$ and 500 nm additions, leading to the enhancement its mechanical properties.

Keywords

References

  1. F. Thevenot: J. Eur. Ceram. Soc., 6 (1990) 205. https://doi.org/10.1016/0955-2219(90)90048-K
  2. M. Khakbiz and F. Akhlaghi: J. Alloys Compd., 479 (2009) 334. https://doi.org/10.1016/j.jallcom.2008.12.076
  3. J. Abenojar, M. A. Martinea and F. Velasco: J. Alloys Compd., 422 (2006) 67. https://doi.org/10.1016/j.jallcom.2005.11.042
  4. I. Topcu, H. O. Culsoy, N. Kadioglu and A. N. Gulluoglu: J. Alloys Compd., 482 (2009) 516. https://doi.org/10.1016/j.jallcom.2009.04.065
  5. J. B. Fogagnolo, E. M. Ruiz-Navas, M. H. Robert and J. M. Torralba: Scripta Mater., 47 (2002) 243. https://doi.org/10.1016/S1359-6462(02)00133-1
  6. Y. Wang, W. M. Rainforth, H. Jones and M. Lieblich: Wea, 251 (2001) 1421. https://doi.org/10.1016/S0043-1648(01)00783-9
  7. J. Abenojar, F. Velasco and M. A. Martinez: J. Mater. Proc. Tech., 184 (2007) 441. https://doi.org/10.1016/j.jmatprotec.2006.11.122
  8. C. J. Beidler, W. E. Hauth and A. Geol: J. Test. Eval., 20 (1992) 67. https://doi.org/10.1520/JTE11899J
  9. A. K. Rai, S. Raju, B. J. Ganesh, G. Panneerselvam, M. Vijayalakshmi, T. Jayakumar and B. Raj: Nucl. Eng. Design, 241 (2011) 2287.
  10. T. G. Haynes, K. Anderson and L. E. Oschmann: United States Patent, 5,965,829 (1999).
  11. V. Bedekar, A. K. Patra, D. Sen, S. Mazumder and A. K. Tyagi: J. Alloys Compd., 453 (2008) 347. https://doi.org/10.1016/j.jallcom.2006.11.085
  12. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  13. J. K. Lee, S. J. Hong, M. K. Lee and C. K. Rhee: J. Kor. Powd. Met. Inst., 12 (2005) 345 (Korean). https://doi.org/10.4150/KPMI.2005.12.5.345

Cited by

  1. C Composite Powder vol.20, pp.3, 2013, https://doi.org/10.4150/KPMI.2013.20.3.215