• 제목/요약/키워드: Sub Capacity

검색결과 1,553건 처리시간 0.024초

Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method

  • Kim, Dong Wook;Park, DaSom;Ko, Chang Hyun;Shin, Kwangsoo;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.237-245
    • /
    • 2021
  • Atomic layer deposition (ALD) enhances the stability of cathode materials via surface modification. Previous studies have demonstrated that an Ni-rich cathode, such as LiNi0.8Co0.1Mn0.1O2, is a promising candidate owing to its high capacity, but is limited by poor cycle stability. In this study, to enhance the stability of the Ni-rich cathode, synthesized LiNi0.8Co0.1Mn0.1O2 was coated with Al2O3 using ALD. Thus, the surface-modified cathode exhibited enhanced stability by protecting the interface from Ni-O formation during the cycling process. The coated LiNi0.8Co0.1Mn0.1O2 exhibited a capacity of 176 mAh g-1 at 1 C and retained up to 72% of the initial capacity after 100 cycles within a range of 2.8-4.3 V (vs Li/Li+. In contrast, pristine LiNi0.8Co0.1Mn0.1O2 presented only 58% of capacity retention after 100 cycles with an initial capacity of 173 mAh g-1. Improved cyclability may be a result of the ALD coating, which physically protects the electrode by modifying the interface, and prevents degradation by resisting side reactions that result in capacity decay. The electrochemical impedance spectra and structural and morphological analysis performed using electron microscopy and X-ray techniques establish the surface enhancement resulting from the aforementioned strategy.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

리튬2차전지용 LiCoO2/LiNi1/3Mn1/3Co1/3O2계 복합정극의 전기화학적 특성 연구 (A Study on Electrochemical Characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 Mixed Cathode for Li Secondary Battery)

  • 김현수;김성일;엄승욱;김우성
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.64-70
    • /
    • 2006
  • In this study, the $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the content of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ increased in a mixed cathode, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability was deteriorated. On the contrary the rate capability of the cathode enhanced, but the reversible specific capacity and cycleability were deteriorated, increasing the content of $LiCoO_2$ in the mixed cathode. The cell of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ ($50:50 wt\%$) mixed cathode delivered a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell showed very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.

리튬이온 이차전지용 양극물질로서 NaxFe2(CN)6의 전기화학적 성능개선 연구 (Enhanced Electrochemical Performance of NaxFe2(CN)6 Positive Electrode Materials for Lithium-ion Batteries)

  • 유성태;윤승주;강정민;김해빈;류지헌
    • 전기화학회지
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2020
  • 프러시안 블루 유사체(Prussian blue analogue)중 가격이 낮은 철(Fe)을 기반으로 하는 Fe2(CN)6와 NaxFe2(CN)6를 침전법으로 합성하여 리튬이온 이차전지용 양극재료로 사용하고자 하였다. Fe2(CN)6는 34.6 mAh g-1의 낮은 가역용량을 발현하였으나, 소듐이 포함된 NaxFe2(CN)6는 방전을 먼저 진행하는 경우에 107.5 mAh g-1의 가역용량을 나타내고, 충전을 먼저 진행하여 구조 내의 소듐을 제거한 후에 사용하는 경우에는 더 높은 용량인 114.1 mAh g-1의 가역용량을 발현하였으며 사이클 수명도 더욱 향상되었다. 그리고, NaxFe2(CN)6의 합성과정에서 0℃, 상온, 60℃의 각각 다른 반응온도를 적용하여 합성하였다. 합성온도에 상관없이 NaxFe2(CN)6는 유사한 초기 가역용량을 나타내었으나, 낮은 온도에서 합성된 경우일 수록 결정자의 크기가 작게 형성되었고, 향상된 사이클 수명을 나타내었다. 0℃에서 합성된 시료의 경우가 가장 사이클 수명이 우수하여 120번째 사이클에서 86.4 mAh g-1의 용량을 나타내며 초기용량의 76.8%를 유지하였다.

Application of the optimal fuzzy-based system on bearing capacity of concrete pile

  • Kun Zhang;Yonghua Zhang;Behnaz Razzaghzadeh
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.25-41
    • /
    • 2024
  • The measurement of pile bearing capacity is crucial for the design of pile foundations, where in-situ tests could be costly and time needed. The primary objective of this research was to investigate the potential use of fuzzy-based techniques to anticipate the maximum weight that concrete driven piles might bear. Despite the existence of several suggested designs, there is a scarcity of specialized studies on the exploration of adaptive neuro-fuzzy inference systems (ANFIS) for the estimation of pile bearing capacity. This paper presents the introduction and validation of a novel technique that integrates the fire hawk optimizer (FHO) and equilibrium optimizer (EO) with the ANFIS, referred to as ANFISFHO and ANFISEO, respectively. A comprehensive compilation of 472 static load test results for driven piles was located within the database. The recommended framework was built, validated, and tested using the training set (70%), validation set (15%), and testing set (15%) of the dataset, accordingly. Moreover, the sensitivity analysis is performed in order to determine the impact of each input on the output. The results show that ANFISFHO and ANFISEO both have amazing potential for precisely calculating pile bearing capacity. The R2 values obtained for ANFISFHO were 0.9817, 0.9753, and 0.9823 for the training, validating, and testing phases. The findings of the examination of uncertainty showed that the ANFISFHO system had less uncertainty than the ANFISEO model. The research found that the ANFISFHO model provides a more satisfactory estimation of the bearing capacity of concrete driven piles when considering various performance evaluations and comparing it with existing literature.

가슴우리 확장운동과 교각운동이 노력성 폐활량과 1초간 노력성 날숨량에 미치는 영향 (The Effect of Chest Extension Exercise and Bridge Exercise on FVC and FEV1)

  • 김충유;배원식
    • 대한통합의학회지
    • /
    • 제9권4호
    • /
    • pp.11-18
    • /
    • 2021
  • Purpose : The purpose of this study was to investigate the effect on lung capacity of healthy men and women in their twenties by performing an intervention using the chest extension exercise and the bridge exercise, which are respiratory muscle strengthening exercises. Methods : Thirty adult men and women in their 20s participated in this study. All subjects participated in the study after hearing the explanation of the purpose and method of the study, filling out a consent form. All subjects were randomly assigned to the chest extension exercise (CEE) group and the bridge exercise (BE) group of fifteen each. Each exercise was performed twice a week for 4 weeks. Lung capacity was measured by forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) using spirometry. Lung capacity was measured before and after exercise. The measured data were compared through the dependent t-test and the independent t-test. The statistical significance level was set at .05. Results : After the intervention, the CEE group showed a significant increase in FVC and FEV1 compared to before the intervention (p<.05). After the intervention, the BE group also had a significant increase in FVC and FEV1 compared to before the intervention (p<.05). However, there was no difference in FVC and FEV1 between groups before and after the intervention (p>.05). Conclusion : There was no difference between groups in lung capacity after exercise. However, both the chest extension exercise and the bridge exercise increased FVC and FEV1, which was thought to be because both exercise methods were effective in increasing lung capacity. Therefore, both chest extension exercises and bridge exercises can be effectively applied as a way to increase lung capacity.

리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성 (Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries)

  • 공명철;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.

A study on heat capacity of oxide and nitride nuclear fuels by using Einstein-Debye approximation

  • Eser, E.;Duyuran, B.;Bolukdemir, M.H.;Koc, H.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1208-1212
    • /
    • 2020
  • Knowledge on fuel enthalpy and its temperature derivative, the heat capacity, are important quantities in determination of fuel behavior in normal reactor operation and reactor transients. The aim of this study is to compare the heat capacity of oxide and nitrite fuels by using Einstein-Debye approximation. A simple analytical expression was performed to calculate the heat capacity of fuels. To test the validity and reliability, the calculated formulas were compared to published results for various nuclear fuels including UO2, ThO2, PuO2 and UN. Calculated formulas yielded results in consistent with literature.

과냉각 열교환기 용량 변화에 따른 인젝션 히트펌프의 성능 특성 (Performance Characteristics of a Vapor Injection Heat Pump System with Different Sub-cooler Capacity)

  • 최종민;박용정;강신형
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권3호
    • /
    • pp.17-23
    • /
    • 2014
  • One major breakthrough in the field of heating, ventilation and air conditioning has been the development of heat pumps. Heat pump systems offer economic alternatives for recovering heat from different sources for use in various industrial, commercial and residential applications. In recent years, the heat pump has been tipped to have a very good potential for hot water production. This paper investigated the performance of a vapor injection heat pump with the variation of sub-cooler capacity at heating mode. The heating capacity of the vapor injection heat pump slightly increased with an increment of sub-cooler capacity, while COP didn't increase continuously. The 20% capacity of sub-cooler comparing with system capacity could be used as a standard to select sub-cooler capacity.