Browse > Article
http://dx.doi.org/10.1016/j.net.2019.11.012

A study on heat capacity of oxide and nitride nuclear fuels by using Einstein-Debye approximation  

Eser, E. (Department of Physics, Ankara Haci Bayram Veli University)
Duyuran, B. (Department of Physics, Gazi University)
Bolukdemir, M.H. (Department of Physics, Gazi University)
Koc, H. (Department of Electrical and Electronics Engineering, Mus Alparslan University)
Publication Information
Nuclear Engineering and Technology / v.52, no.6, 2020 , pp. 1208-1212 More about this Journal
Abstract
Knowledge on fuel enthalpy and its temperature derivative, the heat capacity, are important quantities in determination of fuel behavior in normal reactor operation and reactor transients. The aim of this study is to compare the heat capacity of oxide and nitrite fuels by using Einstein-Debye approximation. A simple analytical expression was performed to calculate the heat capacity of fuels. To test the validity and reliability, the calculated formulas were compared to published results for various nuclear fuels including UO2, ThO2, PuO2 and UN. Calculated formulas yielded results in consistent with literature.
Keywords
Oxide fuel; Nitride fuel; Heat capacity; Einstein-Debye approximation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Chollet, R.C. Belin, J.C. Richaudand, F. Adenot, Procedia Chem. 7 (2012) 466-471.   DOI
2 O. Benes, P. Gotcu-Freis, F. Schworer, R.J.M. Konings, Th Fanghanel, J. Chem. Thermodyn. 43 (2011) 651-655.   DOI
3 T. Yamashita, N. Nitani, T. Tsuji, T. Kato, J. Nucl. Mater. 247 (1997) 90.   DOI
4 H. Serizawa, Y. Araiand, K. Nakajima, J. Chem. Thermodyn. 33 (2001) 615-628.   DOI
5 T. Nishi, A. Itoh, M. Takano, M. Numata, M. Akabori, Y. Arai, K. Minato, J. Nucl. Mater. 376 (2008) 78.   DOI
6 B.M. Askerov, M. Cankurtaran, Phys. Status Solidi B 185 (1994) 341.   DOI
7 W. Parker, R. Jenkins, C. Butler, G. Abott, J. Appl. Phys. 32 (1961) 1679.   DOI
8 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Report No. TID-26711-P1, Technical Information Center, Office of Public Affairs, Energy Research and Development Administration, Oak Ridge, TN, USA, 1976. http://plutonium-erl.actx.edu/fanrfe.html.
9 A. Einstein, Ann. Phys. 34 (1911) 170, and errata 590.   DOI
10 P. Debye, Ann. Phys. 39 (1912) 789.   DOI
11 S.W. Kieffer, Rev. Geophys. Space Phys. 17 (1979) 1-19.   DOI
12 S.W. Kieffer, Rev. Geophys. Space Phys. 17 (1979) 20-34.   DOI
13 S.W. Kieffer, Rev. Geophys. Space Phys. 17 (1979) 35-59.   DOI
14 M.H.G. Jacobs, R. Schmid-Fetzer, A.P. Van den Berg, Phys. Chem. Miner. 20 (2013) 207-227.
15 T. Balcerzak, K. Szalowski, M. Jascur, J. Phys. Condens. Matter 22 (2010) 425401.   DOI
16 G. Ottonello, M. Vetuschi Zuccolini, D. Belmonte, J. Chem. Phys. 133 (2010) 104508.   DOI
17 V.G. Baranov, Yu N. Devyatko, A.V. Tenishev, A.V. Khlunov, O.V. Khomyakov, J. Nucl. Mater. 434 (2013) 248-251.   DOI
18 Y. Yun, P.M. Oppeneer, First-principles design of next-generation nuclear fuels, MRS Bull. 36 (2011) 178-184.   DOI
19 J.K. Fink, J. Nucl. Mater. 279 (2000) 1-18.   DOI
20 J.J. Carbajo, G.L. Yoder, S.G. Popov, V.K. Ivanov, J. Nucl. Mater. 299 (2001) 181-198.   DOI
21 E. Eser, H. Koc, M. Gokbulut, G. Gursoy, Nucl. Eng. Technol. 46 (2014) 863.   DOI
22 H. Koc, E. Eser, B.A. Mamedov, Nucl. Eng. Des. 241 (2011) 3678-3682.   DOI
23 K. Kurosaki, K. Yamada, M. Uno, S. Yamanaka, K. Yamamoto, T. Namekowa, J. Nucl. Mater. 294 (2001) 160-167.   DOI
24 B.A. Mamedov, Nucl. Eng. Des. 276 (2014) (2014) 124-127.   DOI
25 C. Ronchi, Thermophysical properties affecting safety and performance of nuclear fuel, High Temp. 45 (2007) 552-571.   DOI
26 V. Sobolev, J. Nucl. Mater. 344 (2005) 198-205.   DOI
27 V. Sobolev, J. Nucl. Mater. 389 (2009) 45-51.   DOI
28 V. Sobolev, S. Lemehov, J. Nucl. Mater. 352 (2006) 300-308.   DOI
29 D. Terentyev, Comput. Mater. Sci. 40 (2007) 319-326.   DOI
30 K. Bakker, E.H.P. Cordfunke, R.J.M. Konings, R.P.C. Schram, J. Nucl. Mater. 250 (1997) 1-12.   DOI
31 S. Minamoto, M. Kato, K. Konashi, Y. Kawazoe, J. Nucl. Mater. 385 (2009) 18-20.   DOI
32 Y. Takahashi, M. Murabayashi, Y. Akimoto, T. Mukaibo, J. Nucl. Mater. 38 (1971) 303-308.   DOI
33 E.F. Westrum Jr., C.M. Barber, J. Chem. Phys. 45 (1966) 635.   DOI
34 B.T.M. Willis, Neutron diffraction studies of the actinide oxides II. Thermal motions of the atoms in uranium dioxide and thorium dioxide between room temperature and $1100^{\circ}C$, Proc. R. Soc. Lond. Ser A Math. Phys. Sci. 274 (1963) 134.   DOI
35 M. Cankurtaran, B.M. Askerov, Phys. Status Solidi B 194 (1996) 499.   DOI
36 B.A. Mamedov, E. Eser, H. Koc, I.M. Askerov, Int. J. Thermophys. 30 (2009) 1048-1054.   DOI
37 M. Kato, et al., Thermal expansion measurement (U,Pu)O2-x in oxygen partial pressure controlled atmosphere, J. Nucl. Mater. 451 (2014) 78-81.   DOI
38 E.P. Loeven, P.E. McDonald, J. Hohorst, Recommended thorium materials properties to FRACON-3, in: Proc. Int. Top. Meet. Top Fuel- Apr 10-13, ANS, USA, 2000.
39 R.E. Latta, R.E. Fryxell, Determination of solidus-liquidus temperatures in the UO2+ x system (-0.50< x< 0.20), J. Nucl. Mater. 35 (1970) 195.   DOI
40 D. Das (auth), Dasarathi Das, S.R. Bharadwaj, Thoria-based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing, and Waste Management, Springer-Verlag, London, 2013. ISBN: 978-1-4471-5588-1.
41 J.R.B. Roof, An experimental determination of the characteristic temperature for Pu02, J. Nucl. Mater. 2 (1960) 39.   DOI
42 W.M. Olson, R.N.R. Mulford, The decomposition pressure and melting point of uranium Mononitride, J. Phys. Chem. 67 (1963) 952-954.   DOI
43 L.D. Landau, E.M. Lifshits, Statistical Physics, Pergamon Press, London, 1980.
44 Japan Thermal Measurement Society, Thermodynamics Data Base 2 for Personal Computer MALT-2, 1992.
45 I. Barin, Thermochemical Data of Pure Substances, third ed., vol. II, VCH, Weinheim, 1995, 1236 and 1657.
46 R. Agarwal, R. Prasad, V. Venugopal, J. Nucl. Mater. 322 (2003) 98-110.   DOI
47 J.C. Southard, J. Am. Chem. Soc. 63 (1941) 3142.   DOI
48 J.P. Hiernaut, G.J. Hyland, C. Ronchi, Int. J. Thermophys. 14 (1993) 259-283.   DOI
49 D.R. Fredrickson, M.G. Chasanov, J. Chem. Thermodyn. 2 (1970) 623.   DOI
50 F.L. Oetting, J. Nucl. Mater. 105 (1982) 257-261.   DOI
51 O.L. Kruger, H.J. Savage, J. Chem. Phys. 49 (1968) 4540.   DOI
52 The SGTE Pure Substance and Solution Databases, GTT-DATA SERVICES, 1996.
53 J.K. Fink, Int. J. Thermophys. 165 (1982) 3.
54 C. Degueldre, P. Tissot, H. Lartigue, M. Pouchon, Thermochim. Acta 403 (2003) 267-273.   DOI
55 D.T. Hagrman, in: SCDAP/RELAP5/MOD3.1 Code Manual, Volume IV: MATPRO - A Library of Materials Properties for Light-Water-Reactor Accident Analysis, 1993. NUREG/CR-6150, EGG-2720. vol: IV.
56 F.L. Oetting, J.M. Leitnaker, J. Chem. Thermodyn. 4 (1972) 199-211.   DOI
57 Y. Suzuki, Y. Arai, J. Alloy. Comp. 271-273 (1998) 577-582.   DOI
58 I.S. Golovnin, Properties of plutonium dioxide as nuclear fuel, At. Energ. 89 (2000) 117.   DOI
59 S.L. Hayes, J.K. Thomas, K.L. Peddicord, J. Nucl. Mater. 171 (1990) 300-318.   DOI
60 A.T. Nelson, D.R. Rittman, J.T. White, J.T. Dunwoody, M. Kato, K.J. McClellan, J. Am. Ceram. Soc. 97 (2014) 3652-3659.   DOI
61 S. Peng, G. Grimvall, Heat capacity of actinide dioxides, J. Nucl. Mater. 210 (1994) 115-122.   DOI