• 제목/요약/키워드: Structures in fire

검색결과 550건 처리시간 0.02초

Some Considerations for the Fire Safe Design of Tall Buildings

  • Cowlard, Adam;Bittern, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • 국제초고층학회논문집
    • /
    • 제2권1호
    • /
    • pp.63-77
    • /
    • 2013
  • In any subject area related to the provision of safety, failure is typically the most effective mechanism for evoking rapid reform and an introspective assessment of the accepted operating methods and standards within a professional body. In the realm of tall buildings the most notable failures in history, those of the WTC towers, widely accepted as fire induced failures, have not to any significant extent affected the way they are designed with respect to fire safety. This is clearly reflected in the surge in numbers of Tall Buildings being constructed since 2001. The combination of the magnitude and time-scale of the WTC investigation coupled with the absence of meaningful guidance resulting from it strongly hints at the outdatedness of current fire engineering practice as a discipline in the context of such advanced infrastructure. This is further reflected in the continual shift from prescriptive to performance based design in many parts of the world demonstrating an ever growing acceptance that these buildings are beyond the realm of applicability of prescriptive guidance. In order for true performance based engineering to occur however, specific performance goals need to be established for these structures. This work seeks to highlight the critical elements of a fire safety strategy for tall buildings and thus attempt to highlight some specific global performance objectives. A survey of tall building fire investigations is conducted in order to assess the effectiveness of current designs in meeting these objectives, and the current state-of-the-art of fire safety design guidance for tall structures is also analysed on these terms. The correct definition of the design fire for open plan compartments is identified as the critical knowledge gap that must be addressed in order to achieve tall building performance objectives and to provide truly innovative, robust fire safety for these unique structures.

화재피해를 입은 철근콘크리트 단주시험체의 보수재료 적용 후 내화성능 평가 (Fire Resistant Performance after Application of Repaired Materials for Fire-Damaged Reinforced Concrete Column)

  • 심상락;류동우
    • 대한건축학회논문집:구조계
    • /
    • 제36권5호
    • /
    • pp.147-154
    • /
    • 2020
  • Currently, there are no specific repair methods for RC structures damaged by fire, and repair methods are applied when durability deteriorates due to aging. In addition, a number of recent studies have been reported that have conducted fire resistance assessment of the repair materials themselves, assuming exposure to high-temperature environments such as fires. However, researches that evaluate the fire resistance performance of the repair materials by applying existing repair materials to the actual fire damaged reinforced concrete structures are very rare. Therefore, in this study, a number of existing repair materials were applied to fire-damaged concrete column to compare and evaluate the fire resistance performance with the original cover concrete.

Enhancing fire resistance of steel bridges through composite action

  • Kodur, Venkatesh K.R.;Gil, Augusto
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.353-362
    • /
    • 2022
  • Bridge fire hazard has become a growing concern over the last decade due to the rapid increase of ground transportation of hazardous materials and resulting fire incidents. The lack of fire safety provisions in steel bridges can be a significant issue owing steel thermal properties that lead to fast degradation of steel properties at elevated temperatures. Alternatively, the development of composite action between steel girders and concrete decks can increase the fire resistance of steel bridges and meet fire safety requirements in some applications. This paper reviews the fire problem in steel bridges and the fire behavior of composite steel-concrete bridge girders. A numerical model is developed to trace the fire response of a typical bridge girder and is validated using measurements from fire tests. The selected bridge girder is composed by a hot rolled steel section strengthened with bearing stiffeners at midspan and supports. A concrete slab sitting on the top of the girder is connected to the slab through shear studs to provide full composite action. The validated numerical model was used to investigate the fire resistance of real scale bridge girders and the effect of the composite action under different scenarios (standard and hydrocarbon fires). Results showed that composite action can significantly increase the fire resistance of steel bridge girders. Besides, fire severity played an important role in the fire behavior of composite girders and both factors should be taken into consideration in the design of steel bridges for fire safety.

A State-of-art of Experimental Research and Calculated Models of Dowel-type Timber Connections in Fire

  • Luo, Jing;He, Minjuan;Li, Zheng
    • 국제초고층학회논문집
    • /
    • 제10권4호
    • /
    • pp.285-297
    • /
    • 2021
  • Fire safety is one of the most significant issues for the design of mid-rise and high-rise timber structures. A large number of experimental tests were conducted during the last three decades to investigate the fire performance of the dowel-type timber connections. Many influenced parameters (e.g. the thickness of the side timber, the load ratio, the fasteners type etc.) were considered in those experiments. Relevant calculated models were proposed by previous researchers to estimate the fire resistance of the connections. In this study, a series of experimental programs of dowel-type connections in fire are collected. Then, empirical formulas proposed by EN 1995-1-2, Fire safety in timber buildings, and previous researchers are presented and analyzed. The accuracy of those formulas is checked by comparisons between the experimental data and estimated results. The collected experimental research and empirical formulas can be used as the reference for the fire design of dowel-type timber connections in the future.

화재조사 측면에서의 화재진압 및 구조대원의 역할에 대한 연구 (A Study on the Role of Fire Fighting and Rescue Squad in terms of Fire Investigation)

  • 이승훈;이창우
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 춘계학술대회
    • /
    • pp.461-470
    • /
    • 2012
  • Fire scene is mostly destroyed by the flames but fire fighter's fire suppression and rescue activities also destroys a substantail portion. Structures and furnitures which has already become weaken can be easily damaged. Or when structures built up by moving to another location, it's very hard to restore the original state. Also if it is restored, the object has no evidence that it has existed. In all scenes, the scene can't be preserved when quick extinguishment, rescue activities and preventation of fire spread is needed. On this paper, it reviewed the notes about the possibility of field damage by fire suppression and rescue squad's activities. Also it has reviewed the notes how to minimize the field damage by putting out fires and rescue activities by observing the precautions. The reviewed information will help to make guidelines for preserving the scene. By this, it is expected to make a field study exactly by collecting more valid evidence.

  • PDF

슬림 AU 합성보 내화성능 평가 (Fire Resistance Evaluation of SLIM AU Composite Beam)

  • 오명호;김명한
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.53-58
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. However, the verification for fire safety is necessary for the practical application of the composite beam. The fire resistance tests with and without loading were performed for the fire safety verification, and the test results were summarized in this paper.

화재시 콘크리트의 열특성계수가 비정상 열전달해석에 미치는 영향 (An Effectiveness of Temperature-Dependency Thermal Properties in Transient Thermal Analysis of Concrete Structures Exposed to Fire)

  • 이재영;한병찬;김재환;권영진
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.11-14
    • /
    • 2008
  • This paper is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete structures, exposed to fire. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

  • PDF

가열 시험을 거친 AU 합성보의 휨 성능에 관한 실험 연구 (Experimental Study on the Flexural Capacity of AU Composite Beam After the Heating Test)

  • 김영호
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.77-83
    • /
    • 2019
  • AU(A plus U-shaped) composite beam was developed for reducing the story height in the residential buildings, and saving the cosrtuction cost of floor structures. Structural performance and economic feasibility of the composite beam have been sufficiently approved through the structural experiments and the analytical studies. Fire safety for the practical application of the composite beam has also been verified through the fire resistance tests and the heat transfer analyses. In this study 2-points bending tests were performed on the four specimens already tested for fire resistance to evaluate the residual bending strength of AU composite beam after fire accident. The same bending test was performed on the one fresh specimen having the same section and span of the specimens for practically comparative study.

An advanced software interface to make OpenSees for thermal analysis of structures more user-friendly

  • Seong-Hoon Jeong;Ehsan Mansouri;Nadia Ralston;Jong-Wan Hu
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.127-138
    • /
    • 2024
  • In this paper, structural behavior under fire conditions is comprehensively examined, and a novel software interface for testing interfaces efficiently is developed and validated. In order to accurately assess the response of structures to fire scenarios, advanced simulation techniques and modeling approaches are incorporated into the study. This interface enables accurate heat transfer analysis and thermo-mechanical simulations by integrating software tools such as CSI ETABS, CSI SAP2000, and OpenSees. Heat transfer models can be automatically generated, simulation outputs processed, and structural responses interpreted under a variety of fire scenarios using the proposed technique. As a result of rigorous testing and validation against established methods, including Cardington tests on scales and hybrid simulation approaches, the software interface has been proven to be effective and accurate. The analysis process is streamlined by this interface, providing engineers and researchers with a robust tool for assessing structural performance under fire conditions.

Effect of Fire Induced Spalling on the Response of Reinforced Concrete Beams

  • Kodur, V.K.R.;Dwaikat, M.B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.71-81
    • /
    • 2008
  • A macroscopic finite element model is applied to investigate the effect of fire induced spalling on the response of reinforced concrete (RC) beams. Spalling is accounted for in the model through pore pressure calculations in concrete. The principles of mechanics and thermodynamics are applied to compute the temperature induced pore pressure in the concrete structures as a function of fire exposure time. The computed pore pressure is checked against the temperature dependent tensile strength of concrete to determine the extent of spalling. Using the model, case studies are conducted to investigate the influence of concrete permeability, fire scenario and axial restraint on the fire induced spalling and also on the response of RC beams. Results from the analysis indicate that the fire induced spalling, fire scenario, and axial restraint have significant influence on the fire response of RC beams. It is also shown that concrete permeability has substantial effect on the fire induced spalling and thus on the fire response of concrete beams. The fire resistance of high strength concrete beams can be lower that that of normal strength concrete beams due to fire induced spalling resulting from low permeability in high strength concrete.