• Title/Summary/Keyword: Structure properties

Search Result 11,886, Processing Time 0.04 seconds

Probability Analysis of Plane Strain Element using Boundary Element Method (경계요소법을 이용한 평면변형율요소의 확률해석)

  • Jeon, Jeong-Bae;Yoon, Seong-Soo;Park, Jin-Seon;Lee, Hyeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.

The Effects of Cell Sizes on Compression and Bending Strength of Aluminum Material (알루미늄 소재의 미세 기공 크기가 압축 및 굽힘 강도에 미치는 영향)

  • 전용필;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.701-709
    • /
    • 2002
  • Aluminium foam material is highly porous material, which has the complicated cellular structure defined by randomly distributed pores in metallic matrix. This structure gives the characteristic properties which cannot be achieved by any other conventional processes. As the properties of aluminium foam material significantly depend on its porosity, a desired profile of properties can be tailored by changing the foam density. But various defects lead to undesirable effects on the mechanical properties. Mechanical properties are dependent on cell sizes and aspect ratios. Therefore, this paper presents the effects of various processing parameters of various parameters on the mechanical properties. For the sake of this, combined stirring was used to fabricate aluminum foam materials by the parameters. Compression and bending tests were performed to investigate the effects of cell sizes and aspect ratios on the mechanical properties.

The Mechanical Properties and Hand Evaluation of Bedclothes with Hollow Spun Yarn (중공사를 이용한 침장용 소재의 구조적 특성에 따른 역학적 특성 및 태분석)

  • Choi, Hyunseuk;Jang, Hyunmi;Jung, Moonkyu;Jeon, Younhee;Bae, Jihyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.298-311
    • /
    • 2019
  • In this study, the mechanical properties and hand characteristics of the knitted and woven fabrics for bedding items are investigated in accordance with fabric structural parameters including the fiber type and proportion, the density of the fabric, and the knit/weave structure. The knit stitches and structure of the knit samples made an effect on tensile properties. The bending, shear and compression properties for the knit fabric were mainly affected by fiber contents of the samples. The tensile and bending properties of woven samples were highly correlated with the fabric density, thickness and structure, and those shear and compression properties were affected by the fiber contents and structure. Consequently, the primary hand values of the selected samples we developed were estimated to have good smoothness, fullness and softness, and soft feeling, which is well correlated to the parameters of consumer preference such as softness, warmness, and bulkiness. Also, their total hand values were increased.

Effects of Material Properties and Fabric Structure Characteristics of Graduated Compression Stockings (GCS) on the Skin Pressure Distributions

  • Liu Rong;Kwok Yi-Lin;Li Yi;Lao Terence-T;Zhang Xin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.322-331
    • /
    • 2005
  • Graduated compression stockings (GCS) have been widely used for the prophylaxis and treatment of venous diseases. Their gradient pressure function largely related to their fabric structure and material properties. By combing fabric physical testing and wear trials, this study investigated the GCSs fabric structure and material properties at different locations along the stocking hoses, and quantitatively analyzed the effects of fabrics on skin pressure longitudinal and transverse distributions. We concluded that, Structural characteristics and material properties of stocking fabrics were not uniform along the hoses, but a gradual variation from ankle to thigh regions, which significantly influenced the corresponding skin pressure gradient distributions; Tensile (WT, EM) and shearing properties (G) generated most significant differences among ankle, knee and thigh regions along the stocking hose, which significantly influenced the skin pressure lognitudinal gradient distribution. More material indices generating significant gradual changes occurred in the fabric wale direction along stocking hose, meaning that materials properties in wale direction would exert more important impact on the skin pressure gradient performances. And, the greater tensibility and smoother surface of fabric in wale direction would contribute to put stocking on and off, and facilitate wearers' leg extension-flexion movements. The indices of WT and EM of stocking fabrics in series A have strong linear correlations with skin pressure lognitudinal distribution, which largely related to their better performances in gradual changes of material properties. Skin pressure applied by fabric with same material properties produced pronounced differences among four different directions around certain cross-sections of human leg, especially at the ankle region; and, the skin pressure magnitudes at ankle region were more easily influenced by the materials properties, which were considered to be largely related to the anatomic structure of human leg.

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

Fabrication of Hydroxyapatite Ceramics to Mimic the Natural Bone Structure

  • Moon, Dae-Hee;Ryu, Su-Chak
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.390-395
    • /
    • 2011
  • The objective of our study was to produce an imitation bone material consisting of hydroxyapatite with a compact and spongy structure. This study shows the ideal content of $SiO_2$ and the sintering temperature to produce imitation bone that has the mechanical properties of natural bone. On the basis of our determination of the ideal conditions, a compact part was produced and its mechanical properties were tested. A compact part made of 0.5 wt% $SiO_2$ and sintered at $1350^{\circ}C$ showed excellent mechanical properties. The bioactivity of the compact part under this condition was tested, and it was found to be bioactive. The porous part was produced by controlling the powder size, and the dual structure was manufactured by combining the compact and porous parts. A water permeability test confirmed that the dual structure had an interconnected pore structure. Therefore, this dual-body structure is feasible for use in the creation of implants.

Magnetically Soft Nanomaterials Obtained by Devitrification of Metallic Glasses

  • Kulik, Tadeusz;Ferenc, Jaroslaw;Kowalczyk, Maciej;Xiubing, Liang;Nedelko, Natalya
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.65-68
    • /
    • 2004
  • Magnetically soft nanomaterials obtained by controlled crystallisation of metallic glasses are the newest group of materials for inductive components. In particular, research is carried out in the field of alloys for high temperature applications. This kind of materials must meet two basic requirements: good magnetic properties and stability of properties and structure. In the present work the magnetic properties and structure of Fe-Co-Hf-Zr-Cu-B (HIDTPERM-type) alloys were investigated, as well as their stability. Differential thermal analysis, (DTA), X-ray diffractometry (XRD), transmission electron microscopy (TEM), magnetometry (VSM) and quasistatic hysteresis loop recording were used to characterise structure and properties of the alloys investigated. Optimisation against properties and their stability was performed, resulting in formulation of chemical composition of the optimum alloy, as well as its heat treatment.

Half-metallic and Magnetic Properties of (001) Surfaces of KCaN2 Compound in full-Heusler Structure

  • Bialek, Beata;Lee, Jae Il
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.375-379
    • /
    • 2013
  • The electronic and the magnetic properties of (001) surface of $KCaN_2$ half-metallic compound with full-Heusler structure are studied with the use of a full-potential linearized augmented plane wave method. Two possible terminations of the surface are considered and only the one with N atoms in the topmost layer is found to retain the half-metallic properties of the bulk. The magnetic properties of N-terminated surface are enhanced compared with the properties of the bulk. The calculated magnetic moments on the N atoms in the $KCaN_2$ are 1.26 ${\mu}_B$ in the bulk and 1.90 ${\mu}_B$ at the surface. The subsurface metal atoms are also slightly polarized. In the surface terminated with metal atoms, not only the half-metallicity is destroyed, but also the magnetic properties of the system are weakened.

Structure and Physical Properties of $YSe_{1.83}$

  • 김성진;오훈정
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.515-518
    • /
    • 1995
  • YSe1.83 was synthesized by vapor transport technique and its crystal structure was determined. The structure was isostructure of LaTe2-x, which was layered structure consisting of two-atom thick layers of YSe with distorted NaCl-type structure and one-atom thick layer of Se. The substructure of YSe1.83 was tetragonal with space group of P4/nmm and a=4.011(2) and c=8.261(3) Å with final R/Rw=6.4/6.9 %. The superstructure with asuper=2a, bsuper=6b and csuper=2c was found. The measurements of electronic and magnetic properties of this compound indicate that it is an electronic insulator and diamagnet.

Silicene on Other Two-dimensional Materials: Formation of Heterostructure

  • Kim, Jung Hwa;Lee, Zonghoon
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.123-132
    • /
    • 2014
  • Silicene is one of the most interesting two-dimensional materials, because of not only the extraordinary properties similar to graphene, but also easy compatibility with existing silicon-based devices. However, non-existing graphitic-like structure on silicon and unstable free-standing silicene structure leads to difficulty in commercialization of this material. Therefore, substrates are essential for silicene, which affects various properties of silicene and supporting unstable structure. For maintaining outstanding properties of silicene, van der Waals bonding between silicene and substrate is essential because strong interaction, such as silicene with metal, breaks the band structure of silicene. Therefore, we review the stability of silicene on other two-dimensional materials for van der Waals bonding. In addition, the properties of silicene are reviewed for silicene-based heterostructure.