1 |
Zhou M, Li R S, Zhou J Y, Guo X S, Liu B, Zhang Z X, and Xie E Q (2009) Growth and characterization of aligned ultralong and diametercontrolled silicon nanotubes by hot wire chemical vapor deposition using electrospun poly(vinyl pyrrolidone) nanofiber template. J. Appl. Phys. 106, 124315.
DOI
|
2 |
Scalise E, Cinquanta E, Houssa M, van den Broek B, Chiappe D, Grazianetti C, Pourtois G, Ealet B, Molle A, Fanciulli M, Afanas'ev V V, and Stesmans A (2014) Vibrational properties of epitaxial silicene layers on (111) Ag. Appl. Surf. Sci. 291, 113-117.
DOI
|
3 |
Shao Z G, Ye X S, Yang L, and Wang C L (2013) First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114, 093712.
DOI
|
4 |
Shirai T, Shirasawa T, Hirahara T, Fukui N, Takahashi T, and Gasegawa S (2014) Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface (vol 89, 241403, 2014). Phys. Rev. B 90, 039902.
|
5 |
Sone J, Yamagami T, Aoki Y, Nakatsuji K, and Hirayama H (2014) Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys. 16, 095004.
DOI
|
6 |
Song Y L, Zhang S, Lu D B, Xu H R, Wang Z, Zhang Y, and Lu Z W (2013) Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. Eur. Phys. J. B 86, 488.
DOI
|
7 |
Tchalala M R, Enriquez H, Yildirim H, Kara A, Mayne A J, Dujardin G, Ali M A, and Oughaddou H (2014) Atomic and electronic structures of the (root 13 root 13)R13.9 degrees of silicene sheet on Ag(111). Appl. Surf. Sci. 303, 61-66.
DOI
|
8 |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, and Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501.
DOI
|
9 |
Voon L C L Y and Guzman-Verri G G (2014) Is silicene the next graphene? MRS Bull. 39, 366-373.
DOI
|
10 |
Yuan Y K, Quhe R G, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, and Lu J (2014) Strong band hybridization between silicene and Ag(111) substrate. Physica E 58, 38-42.
DOI
|
11 |
Moras P, Mentes T O, Sheverdyaeva P M, Locatelli A, and Carbone C (2014) Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys-Condens. Mat. 26, 185001.
DOI
|
12 |
Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, and Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett. 12, 113-118.
DOI
|
13 |
Pflugradt P, Matthes L, and Bechstedt F (2014b) Silicene on metal and metallized surfaces: ab initio studies. New J. Phys. 16, 075004.
DOI
|
14 |
Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J, and Gao H J (2014) Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene. Small 10, 2215-2225.
DOI
|
15 |
Pflugradt P, Matthes L, and Bechstedt F (2014a) Unexpected symmetry and AA stacking of bilayer silicene on Ag(111). Phys. Rev. B 89, 205428.
DOI
|
16 |
Quhe R G, Zheng J X, Luo G F, Liu Q H, Qin R, Zhou J, Yu D P, Nagase S, Mei W N, Gao Z X, and Lu J (2012) Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. Npg. Asia Mater. 4, e6.
DOI
|
17 |
Qin R, Zhu W J, Zhang Y L, and Deng X L (2014) Uniaxial strain-induced mechanical and electronic property modulation of silicene. Nanoscale Res. Lett. 9, 521.
DOI
|
18 |
Quhe R G, Yuan Y K, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, Yu D P, Yang J B, and Lu J (2014) Does the Dirac cone exist in silicene on metal substrates? Sci. Rep-Uk. 4, 5476.
|
19 |
Sahin H and Peeters F M (2013) Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 87, 085423.
DOI
|
20 |
Sahin H, Sivek J, Li S, Partoens B, and Peeters F M (2013) Stone-Wales defects in silicene: formation, stability, and reactivity of defect sites. Phys. Rev. B 88, 045434.
DOI
|
21 |
Li X D, Mullen J T, Jin Z H, Borysenko K M, Nardelli M B, and Kim K W (2013b) Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418.
DOI
|
22 |
Lin X Q and Ni J (2012) Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study. Phys. Rev. B 86, 075440.
DOI
|
23 |
Li X D, Wu S Q, Zhou S, and Zhu Z Z (2014c) Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res. Lett. 9, 110.
DOI
|
24 |
Liu J J and Zhang W Q (2013) Bilayer silicene with an electrically-tunable wide band gap. Rsc. Adv. 3, 21943-21948.
DOI
|
25 |
Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, and Takagi N (2013) Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110, 076801.
DOI
|
26 |
Liu H S, Gao J F, and Zhao J J (2013) Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117, 10353-10359.
DOI
|
27 |
Liu Z L, Wang M X, Liu C H, Jia J F, Vogt P, Quaresima C, Ottaviani C, Olivieri B, De Padova P, and Le Lay G (2014a) The fate of the 2 root 3 2 root 3 R(30 degrees) silicene phase on Ag(111). Apl. Mater. 2, 092513.
DOI
|
28 |
Ma Y D, Dai Y, Guo M, Niu C W, and Huang B B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883-3887.
DOI
|
29 |
Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, and Carbone C (2014) Silicene on Ag(111): a honeycomb lattice without Dirac bands. Phys. Rev. B 89, 201416.
DOI
ScienceOn
|
30 |
Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, and Gao H J (2013) Buckled silicene formation on Ir(111). Nano Lett. 13, 685-690.
DOI
|
31 |
Kaltsas D, Tsetseris L, and Dimoulas A (2014) Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures. Appl. Surf. Sci. 291, 93-97.
DOI
|
32 |
Kamal C, Chakrabarti A, and Banerjee A (2014) Ab initio investigation on hybrid graphite-like structure made up of silicene and boron nitride. Phys. Lett. A 378, 1162-1169.
DOI
|
33 |
Kaloni T P, Tahir M, and Schwingenschlogl U (2013a) Quasi free-standing silicene in a superlattice with hexagonal boron nitride. Sci. Rep-Uk. 3, 3192.
DOI
|
34 |
Kaloni T P, Gangopadhyay S, Singh N, Jones B, and Schwingenschlogl U (2013b) Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 88, 235418.
DOI
|
35 |
Kara A, Leandri C, Davila M, Padova P, Ealet B, Oughaddou H, Aufray B, and Lay G (2009) Physics of silicene stripes. J. Supercond. Nov. Magn. 22, 259-263.
DOI
|
36 |
Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M, and Takagi N (2014) Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction. Surf. Sci. 623, 25-28.
DOI
|
37 |
Li G H, Tan J, Liu X D, Wang X P, Li F, and Zhao M W (2014b) Manifold electronic structure transition of hybrid silicane-silicene nanoribbons. Chem. Phys. Lett. 595, 20-24.
|
38 |
Li L Y, Wang X P, Zhao X Y, and Zhao M W (2013a) Moire superstructures of silicene on hexagonal boron nitride: a first-principles study. Phys. Lett. A 377, 2628-2632.
DOI
|
39 |
Li L Y and Zhao M W (2014) Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 118, 19129-19138.
DOI
|
40 |
Li S, Wu Y F, Liu W, and Zhao Y H (2014a) Control of band structure of van der Waals heterostructures: silicene on ultrathin silicon nanosheets. Chem. Phys. Lett. 609, 161-166.
DOI
|
41 |
Ezawa M (2012b) A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003.
DOI
|
42 |
Fuhrer M S, Lau C N, and MacDonald A H (2010) Graphene: materially better carbon. MRS Bull. 35, 289-295.
DOI
|
43 |
Gao J F and Zhao J J (2012) Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface. Sci. Rep-Uk. 2, 861.
DOI
|
44 |
Gao N, Li J C, and Jiang Q (2014a) Bandgap opening in silicene: effect of substrates. Chem. Phys. Lett. 592, 222-226.
DOI
|
45 |
Gao N, Li J C, and Jiang Q (2014b) Tunable band gaps in silicene-MoS2 heterobilayers. Phys. Chem. Chem. Phys. 16, 11673-11678.
DOI
|
46 |
Guo Z X and Oshiyama A (2014) Structural tristability and deep Dirac states in bilayer silicene on Ag(111) surfaces. Phys. Rev. B 89, 155418.
DOI
|
47 |
Houssa M, van den Broek B, Scalise E, Pourtois G, Afanasev V V, and Stesmans A (2013) An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 15, 3702-3705.
DOI
|
48 |
Johnson N W, Vogt P, Resta A, De Padova P, Perez I, Muir D, Kurmaev E Z, Le Lay G, and Moewes A (2014) The metallic nature of epitaxial silicene monolayers on Ag(111). Adv. Funct. Mater. 24, 5253-5259.
DOI
|
49 |
Jose D and Datta A (2011) Structures and electronic properties of silicene clusters: a promising material for FET and hydrogen storage. Phys. Chem. Chem. Phys. 13, 7304-7311.
DOI
|
50 |
Jose D and Datta A (2012) Understanding of the buckling distortions in silicene. J. Phys. Chem. C 116, 24639-24648.
DOI
|
51 |
Jose D and Datta A (2014) Structures and chemical properties of silicene:unlike graphene. Accounts Chem. Res. 47, 593-602.
DOI
|
52 |
Chang H R, Zhou J H, Zhang H, and Yao Y G (2014) Probing the topological phase transition via density oscillations in silicene and germanene. Phys. Rev. B 89, 201411.
DOI
|
53 |
Chavez-Castillo M R, Rodriguez-Meza M A, and Meza-Montes L (2012) 2D radial distribution function of silicene. Rev. Mex. Fis. 58, 139-143.
|
54 |
Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, and Meng S (2013) Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys. Rev. Lett 110, 085504.
DOI
|
55 |
Chen M X and Weinert M (2014) Revealing the substrate origin of the linear dispersion of silicene/Ag(111). Nano Lett. 14, 5189-5193.
DOI
|
56 |
Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, and Molle A (2014) Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 26, 2096-2101.
DOI
|
57 |
De Padova P, Quaresima C, Olivieri B, Perfetti P, and Le Lay G (2011) sp(2)-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl. Phys. Lett. 98, 081909.
DOI
|
58 |
Ding Y and Ni J (2009) Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 95, 083115.
DOI
|
59 |
Drummond N D, Zolyomi V, and Fal'ko V I (2012) Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423.
DOI
|
60 |
Ezawa M (2013) Hexagonally warped Dirac cones and topological phase transition in silicene superstructure. Eur. Phys. J. B 86, 139.
DOI
|
61 |
Dzade N Y, Obodo K O, Adjokatse S K, Ashu A C, Amankwah E, Atiso C D, Bello A A, Igumbor E, Nzabarinda S B, Obodo J T, Ogbuu A O, Femi O E, Udeigwe J O, and Waghmare U V (2010) Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet. J. Phys-Condens. Mat. 22, 375502.
DOI
|
62 |
Ezawa M (2012a) Topological phase transition and electrically tunable diamagnetism in silicene. Eur. Phys. J. B 85, 363.
DOI
|
63 |
Borensztein Y, Prevot G, and Masson L (2014) Large differences in the optical properties of a single layer of Si on Ag(110) compared to silicene. Phys. Rev. B 89, 245410.
DOI
|
64 |
Cahangirov S, Ozcelik V O, Xian L D, Avila J, Cho S, Asensio M C, Ciraci S, and Rubio A (2014) Atomic structure of the root 3 root 3 phase of silicene on Ag(111). Phys. Rev. B 90, 035448.
DOI
|
65 |
Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, and Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102.
DOI
|
66 |
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, and Lau C N (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907.
DOI
ScienceOn
|
67 |
Cahangirov S, Topsakal M, Akturk E, Sahin H, and Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804.
DOI
|
68 |
Liu Z L, Wang M X, Xu J P, Ge J F, Le Lay G, Vogt P, Qian D, Gao C L, Liu C H, and Jia J F (2014b) Various atomic structures of monolayer silicene fabricated on Ag(111). New J. Phys. 16, 075006.
DOI
|