Browse > Article
http://dx.doi.org/10.9729/AM.2014.44.4.123

Silicene on Other Two-dimensional Materials: Formation of Heterostructure  

Kim, Jung Hwa (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) and Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS))
Lee, Zonghoon (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) and Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS))
Publication Information
Applied Microscopy / v.44, no.4, 2014 , pp. 123-132 More about this Journal
Abstract
Silicene is one of the most interesting two-dimensional materials, because of not only the extraordinary properties similar to graphene, but also easy compatibility with existing silicon-based devices. However, non-existing graphitic-like structure on silicon and unstable free-standing silicene structure leads to difficulty in commercialization of this material. Therefore, substrates are essential for silicene, which affects various properties of silicene and supporting unstable structure. For maintaining outstanding properties of silicene, van der Waals bonding between silicene and substrate is essential because strong interaction, such as silicene with metal, breaks the band structure of silicene. Therefore, we review the stability of silicene on other two-dimensional materials for van der Waals bonding. In addition, the properties of silicene are reviewed for silicene-based heterostructure.
Keywords
Silicene; Two-dimensional materials; Heterostructure; Band gap; van der Waals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou M, Li R S, Zhou J Y, Guo X S, Liu B, Zhang Z X, and Xie E Q (2009) Growth and characterization of aligned ultralong and diametercontrolled silicon nanotubes by hot wire chemical vapor deposition using electrospun poly(vinyl pyrrolidone) nanofiber template. J. Appl. Phys. 106, 124315.   DOI
2 Scalise E, Cinquanta E, Houssa M, van den Broek B, Chiappe D, Grazianetti C, Pourtois G, Ealet B, Molle A, Fanciulli M, Afanas'ev V V, and Stesmans A (2014) Vibrational properties of epitaxial silicene layers on (111) Ag. Appl. Surf. Sci. 291, 113-117.   DOI
3 Shao Z G, Ye X S, Yang L, and Wang C L (2013) First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 114, 093712.   DOI
4 Shirai T, Shirasawa T, Hirahara T, Fukui N, Takahashi T, and Gasegawa S (2014) Structure determination of multilayer silicene grown on Ag(111) films by electron diffraction: evidence for Ag segregation at the surface (vol 89, 241403, 2014). Phys. Rev. B 90, 039902.
5 Sone J, Yamagami T, Aoki Y, Nakatsuji K, and Hirayama H (2014) Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys. 16, 095004.   DOI
6 Song Y L, Zhang S, Lu D B, Xu H R, Wang Z, Zhang Y, and Lu Z W (2013) Band-gap modulations of armchair silicene nanoribbons by transverse electric fields. Eur. Phys. J. B 86, 488.   DOI
7 Tchalala M R, Enriquez H, Yildirim H, Kara A, Mayne A J, Dujardin G, Ali M A, and Oughaddou H (2014) Atomic and electronic structures of the (root 13 $\times$ root 13)R13.9 degrees of silicene sheet on Ag(111). Appl. Surf. Sci. 303, 61-66.   DOI
8 Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, and Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108, 155501.   DOI
9 Voon L C L Y and Guzman-Verri G G (2014) Is silicene the next graphene? MRS Bull. 39, 366-373.   DOI
10 Yuan Y K, Quhe R G, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, and Lu J (2014) Strong band hybridization between silicene and Ag(111) substrate. Physica E 58, 38-42.   DOI
11 Moras P, Mentes T O, Sheverdyaeva P M, Locatelli A, and Carbone C (2014) Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys-Condens. Mat. 26, 185001.   DOI
12 Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P, and Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett. 12, 113-118.   DOI
13 Pflugradt P, Matthes L, and Bechstedt F (2014b) Silicene on metal and metallized surfaces: ab initio studies. New J. Phys. 16, 075004.   DOI
14 Pan Y, Zhang L Z, Huang L, Li L F, Meng L, Gao M, Huan Q, Lin X, Wang Y L, Du S X, Freund H J, and Gao H J (2014) Construction of 2D atomic crystals on transition metal surfaces: graphene, silicene, and hafnene. Small 10, 2215-2225.   DOI
15 Pflugradt P, Matthes L, and Bechstedt F (2014a) Unexpected symmetry and AA stacking of bilayer silicene on Ag(111). Phys. Rev. B 89, 205428.   DOI
16 Quhe R G, Zheng J X, Luo G F, Liu Q H, Qin R, Zhou J, Yu D P, Nagase S, Mei W N, Gao Z X, and Lu J (2012) Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. Npg. Asia Mater. 4, e6.   DOI
17 Qin R, Zhu W J, Zhang Y L, and Deng X L (2014) Uniaxial strain-induced mechanical and electronic property modulation of silicene. Nanoscale Res. Lett. 9, 521.   DOI
18 Quhe R G, Yuan Y K, Zheng J X, Wang Y Y, Ni Z Y, Shi J J, Yu D P, Yang J B, and Lu J (2014) Does the Dirac cone exist in silicene on metal substrates? Sci. Rep-Uk. 4, 5476.
19 Sahin H and Peeters F M (2013) Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Phys. Rev. B 87, 085423.   DOI
20 Sahin H, Sivek J, Li S, Partoens B, and Peeters F M (2013) Stone-Wales defects in silicene: formation, stability, and reactivity of defect sites. Phys. Rev. B 88, 045434.   DOI
21 Li X D, Mullen J T, Jin Z H, Borysenko K M, Nardelli M B, and Kim K W (2013b) Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418.   DOI
22 Lin X Q and Ni J (2012) Much stronger binding of metal adatoms to silicene than to graphene: a first-principles study. Phys. Rev. B 86, 075440.   DOI
23 Li X D, Wu S Q, Zhou S, and Zhu Z Z (2014c) Structural and electronic properties of germanene/MoS2 monolayer and silicene/MoS2 monolayer superlattices. Nanoscale Res. Lett. 9, 110.   DOI
24 Liu J J and Zhang W Q (2013) Bilayer silicene with an electrically-tunable wide band gap. Rsc. Adv. 3, 21943-21948.   DOI
25 Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, and Takagi N (2013) Substrate-induced symmetry breaking in silicene. Phys. Rev. Lett. 110, 076801.   DOI
26 Liu H S, Gao J F, and Zhao J J (2013) Silicene on substrates: a way to preserve or tune its electronic properties. J. Phys. Chem. C 117, 10353-10359.   DOI
27 Liu Z L, Wang M X, Liu C H, Jia J F, Vogt P, Quaresima C, Ottaviani C, Olivieri B, De Padova P, and Le Lay G (2014a) The fate of the 2 root 3 $\times$ 2 root 3 R(30 degrees) silicene phase on Ag(111). Apl. Mater. 2, 092513.   DOI
28 Ma Y D, Dai Y, Guo M, Niu C W, and Huang B B (2011) Graphene adhesion on MoS2 monolayer: an ab initio study. Nanoscale 3, 3883-3887.   DOI
29 Mahatha S K, Moras P, Bellini V, Sheverdyaeva P M, Struzzi C, Petaccia L, and Carbone C (2014) Silicene on Ag(111): a honeycomb lattice without Dirac bands. Phys. Rev. B 89, 201416.   DOI   ScienceOn
30 Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, and Gao H J (2013) Buckled silicene formation on Ir(111). Nano Lett. 13, 685-690.   DOI
31 Kaltsas D, Tsetseris L, and Dimoulas A (2014) Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures. Appl. Surf. Sci. 291, 93-97.   DOI
32 Kamal C, Chakrabarti A, and Banerjee A (2014) Ab initio investigation on hybrid graphite-like structure made up of silicene and boron nitride. Phys. Lett. A 378, 1162-1169.   DOI
33 Kaloni T P, Tahir M, and Schwingenschlogl U (2013a) Quasi free-standing silicene in a superlattice with hexagonal boron nitride. Sci. Rep-Uk. 3, 3192.   DOI
34 Kaloni T P, Gangopadhyay S, Singh N, Jones B, and Schwingenschlogl U (2013b) Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 88, 235418.   DOI
35 Kara A, Leandri C, Davila M, Padova P, Ealet B, Oughaddou H, Aufray B, and Lay G (2009) Physics of silicene stripes. J. Supercond. Nov. Magn. 22, 259-263.   DOI
36 Kawahara K, Shirasawa T, Arafune R, Lin C L, Takahashi T, Kawai M, and Takagi N (2014) Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction. Surf. Sci. 623, 25-28.   DOI
37 Li G H, Tan J, Liu X D, Wang X P, Li F, and Zhao M W (2014b) Manifold electronic structure transition of hybrid silicane-silicene nanoribbons. Chem. Phys. Lett. 595, 20-24.
38 Li L Y, Wang X P, Zhao X Y, and Zhao M W (2013a) Moire superstructures of silicene on hexagonal boron nitride: a first-principles study. Phys. Lett. A 377, 2628-2632.   DOI
39 Li L Y and Zhao M W (2014) Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 118, 19129-19138.   DOI
40 Li S, Wu Y F, Liu W, and Zhao Y H (2014a) Control of band structure of van der Waals heterostructures: silicene on ultrathin silicon nanosheets. Chem. Phys. Lett. 609, 161-166.   DOI
41 Ezawa M (2012b) A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 033003.   DOI
42 Fuhrer M S, Lau C N, and MacDonald A H (2010) Graphene: materially better carbon. MRS Bull. 35, 289-295.   DOI
43 Gao J F and Zhao J J (2012) Initial geometries, interaction mechanism and high stability of silicene on Ag(111) surface. Sci. Rep-Uk. 2, 861.   DOI
44 Gao N, Li J C, and Jiang Q (2014a) Bandgap opening in silicene: effect of substrates. Chem. Phys. Lett. 592, 222-226.   DOI
45 Gao N, Li J C, and Jiang Q (2014b) Tunable band gaps in silicene-MoS2 heterobilayers. Phys. Chem. Chem. Phys. 16, 11673-11678.   DOI
46 Guo Z X and Oshiyama A (2014) Structural tristability and deep Dirac states in bilayer silicene on Ag(111) surfaces. Phys. Rev. B 89, 155418.   DOI
47 Houssa M, van den Broek B, Scalise E, Pourtois G, Afanasev V V, and Stesmans A (2013) An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 15, 3702-3705.   DOI
48 Johnson N W, Vogt P, Resta A, De Padova P, Perez I, Muir D, Kurmaev E Z, Le Lay G, and Moewes A (2014) The metallic nature of epitaxial silicene monolayers on Ag(111). Adv. Funct. Mater. 24, 5253-5259.   DOI
49 Jose D and Datta A (2011) Structures and electronic properties of silicene clusters: a promising material for FET and hydrogen storage. Phys. Chem. Chem. Phys. 13, 7304-7311.   DOI
50 Jose D and Datta A (2012) Understanding of the buckling distortions in silicene. J. Phys. Chem. C 116, 24639-24648.   DOI
51 Jose D and Datta A (2014) Structures and chemical properties of silicene:unlike graphene. Accounts Chem. Res. 47, 593-602.   DOI
52 Chang H R, Zhou J H, Zhang H, and Yao Y G (2014) Probing the topological phase transition via density oscillations in silicene and germanene. Phys. Rev. B 89, 201411.   DOI
53 Chavez-Castillo M R, Rodriguez-Meza M A, and Meza-Montes L (2012) 2D radial distribution function of silicene. Rev. Mex. Fis. 58, 139-143.
54 Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, and Meng S (2013) Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene. Phys. Rev. Lett 110, 085504.   DOI
55 Chen M X and Weinert M (2014) Revealing the substrate origin of the linear dispersion of silicene/Ag(111). Nano Lett. 14, 5189-5193.   DOI
56 Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, and Molle A (2014) Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 26, 2096-2101.   DOI
57 De Padova P, Quaresima C, Olivieri B, Perfetti P, and Le Lay G (2011) sp(2)-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl. Phys. Lett. 98, 081909.   DOI
58 Ding Y and Ni J (2009) Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 95, 083115.   DOI
59 Drummond N D, Zolyomi V, and Fal'ko V I (2012) Electrically tunable band gap in silicene. Phys. Rev. B 85, 075423.   DOI
60 Ezawa M (2013) Hexagonally warped Dirac cones and topological phase transition in silicene superstructure. Eur. Phys. J. B 86, 139.   DOI
61 Dzade N Y, Obodo K O, Adjokatse S K, Ashu A C, Amankwah E, Atiso C D, Bello A A, Igumbor E, Nzabarinda S B, Obodo J T, Ogbuu A O, Femi O E, Udeigwe J O, and Waghmare U V (2010) Silicene and transition metal based materials: prediction of a two-dimensional piezomagnet. J. Phys-Condens. Mat. 22, 375502.   DOI
62 Ezawa M (2012a) Topological phase transition and electrically tunable diamagnetism in silicene. Eur. Phys. J. B 85, 363.   DOI
63 Borensztein Y, Prevot G, and Masson L (2014) Large differences in the optical properties of a single layer of Si on Ag(110) compared to silicene. Phys. Rev. B 89, 245410.   DOI
64 Cahangirov S, Ozcelik V O, Xian L D, Avila J, Cho S, Asensio M C, Ciraci S, and Rubio A (2014) Atomic structure of the root 3 $\times$ root 3 phase of silicene on Ag(111). Phys. Rev. B 90, 035448.   DOI
65 Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Ealet B, and Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl. Phys. Lett. 96, 183102.   DOI
66 Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, and Lau C N (2008) Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907.   DOI   ScienceOn
67 Cahangirov S, Topsakal M, Akturk E, Sahin H, and Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804.   DOI
68 Liu Z L, Wang M X, Xu J P, Ge J F, Le Lay G, Vogt P, Qian D, Gao C L, Liu C H, and Jia J F (2014b) Various atomic structures of monolayer silicene fabricated on Ag(111). New J. Phys. 16, 075006.   DOI