This study aims to identify the structure of the plant community, and the ecological succession sere and the change in the forest ecosystem in Jungdaesa-Birobong area, Odaesan National Park_(i._e., located at high altitudes(over 1,000m)). It seeks to offer the basic data for the planning of vegetation management. In order to verify the status of the forest vegetation between Jungdaesa-Birobong, seventeen plots(size is $20m{\times}20m$) were set up as research sites at high altitudes. Importance value, distribution by diameter at breast height(DBH), the growth volume and age of the sample trees, similarity index and species diversity index of each survey plot were analysed. According to the results of DCA(Detrended Correspondence Analysis), one of the multivariate statistical techniques. It was found that the plant communities were classified into five groups: community I_(Quercus mongolica-Tilia amurensis community), community II_(Q. mongolica-Deciduous broad-leaved community), community III_(Q. mongolica-Pinus koraiensis community), community IV_(Abies holophylla-Q. mongolica community) and community V_(A. holophylla-Deciduous broad-leaved community). Community I which is dominated by Quercus mongolica and Deciduous broad-leaved communities is located at an altitude of over 1,300 meters(ranging from 1,335m to 1,495m), the community IV and V which are dominated by Abies holophylla are located at an altitude of under 1,200 meters(ranging from 1,115m to 1,175m) and the community II and III which include the main species of Quercus mongolica, Pinus koraiensis and Abies holophylla are located at an altitude of between 1,160 meters and 1,300 meters. The results showed that Quercus mongolica tends to have a higher importance value of woody species at a higher altitude while Abies holophylla tends to have higher importance value at a lower altitude. For the importance value woody species and -DBH class distribution, the communites I, II and III are expected to continuously maintain the present status. Whereas, for the influence of communities IV and V, Q. mongolica is predicted to be weakened. The age of sample trees was between 85 and 161; the average age was 123. The index of Shannon's Species diversity (H') showed heterogeneity was found among community I_(i._e., located at high altitude) and communities IV and V_(i._e., located at low altitude). As a results of analysing the index of Shannon's Species diversity (H': unit: $400m^2$), community III showed the highest diversity intex with 1.1109 followed by community II with 1.0475, community I with 1.0125, community IV with 0.9918 and community V with 0.8686. This study verified that the index of Shannon's species was significantly different by plant communities. For instance, when comparing the index of Shannon's species diversity in Quercus mongolica communities of this study and that of past relevant research, the value of index is very similar. However, the diversity index for the community which is dominated by Abies holophylla showed lower value when compared to the results from past relevant research.