Abstract
In the recent field of recommendation systems, various studies have been conducted to model sparse data effectively. Among these, GLocal-K(Global and Local Kernels for Recommender Systems) is a research endeavor combining global and local kernels to provide personalized recommendations by considering global data patterns and individual user characteristics. However, due to its utilization of kernel tricks, GLocal-K exhibits diminished performance on highly sparse data and struggles to offer recommendations for new users or items due to the absence of side information. In this paper, to address these limitations of GLocal-K, we propose the GEase-K (Global and EASE kernels for Recommender Systems) model, incorporating the EASE(Embarrassingly Shallow Autoencoders for Sparse Data) model and leveraging side information. Initially, we substitute EASE for the local kernel in GLocal-K to enhance recommendation performance on highly sparse data. EASE, functioning as a simple linear operational structure, is an autoencoder that performs highly on extremely sparse data through regularization and learning item similarity. Additionally, we utilize side information to alleviate the cold-start problem. We enhance the understanding of user-item similarities by employing a conditional autoencoder structure during the training process to incorporate side information. In conclusion, GEase-K demonstrates resilience in highly sparse data and cold-start situations by combining linear and nonlinear structures and utilizing side information. Experimental results show that GEase-K outperforms GLocal-K based on the RMSE and MAE metrics on the highly sparse GoodReads and ModCloth datasets. Furthermore, in cold-start experiments divided into four groups using the GoodReads and ModCloth datasets, GEase-K denotes superior performance compared to GLocal-K.
최근 추천시스템 분야에서는 희소한 데이터를 효과적으로 모델링하기 위한 다양한 연구가 진행되고 있다. GLocal-K(Global and Local Kernels for Recommender Systems)는 그중 하나의 연구로 전역 커널과 지역 커널을 결합하여 데이터의 전역적인 패턴과 개별 사용자의 특성을 모두 고려해 사용자 맞춤형 추천을 제공하는 모델이다. 하지만 GLocal-K는 커널 트릭을 사용하기 때문에 매우 희소한 데이터에서 성능이 떨어지고 부가 정보를 사용하지 않아 새로운 사용자나 아이템에 대한 추천을 제공하는 데 어려움이 있다. 본 논문에서는 이러한 GLocal-K의 단점을 극복하기 위해 EASE(Embarrassingly Shallow Autoencoders for Sparse Data) 모델과 부가 정보를 활용한 GEase-K(Global and EASE kernels for Recommender Systems) 모델을 제안한다. 우선 GLocal-K의 지역 커널 대신 EASE를 활용하여 매우 희소한 데이터에서 추천 성능을 높이고자 하였다. EASE는 단순한 선형 연산 구조로 이루어져 있지만, 규제화와 아이템 간 유사도 학습을 통해 매우 희소한 데이터에서 높은 성능을 내는 오토인코더이다. 다음으로 Cold Start 완화를 위해 부가 정보를 활용하였다. 학습 과정에서 부가 정보를 추가하기 위해 조건부 오토인코더 구조를 적용하였으며 이를 통해 사용자-아이템 간의 유사성을 더 잘 파악할 수 있도록 하였다. 결론적으로 GEase-K는 선형 구조와 비선형 구조의 결합, 부가 정보의 활용을 통해 매우 희소한 데이터와 Cold Start 상황에서 강건한 모습을 보인다. 실험 결과, GEase-K는 매우 희소한 GoodReads, ModCloth 데이터 세트에서 RMSE, MAE 평가 지표 기준 GLocal-K 보다 높은 성능을 보였다. 또한 GoodReads, ModCloth 데이터 세트를 4개의 집단으로 나누어 실험한 Cold Start 실험에서도 GLocal-K 대비 Cold Start 상황에서 좋은 성능을 보였다.