• 제목/요약/키워드: Structure Safety

검색결과 4,442건 처리시간 0.032초

내진여유도평가법에 근거한 기존 강구조물의 내진성능평가 (Evaluation of Seismic Margin of Existing Steel Structure Based on Seismic Margin Assessment)

  • 황규호;송정국;강선구;서용표
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.239-249
    • /
    • 2002
  • The Turbine Building of nuclear power plant is classified as non safety-related structure. During the operation, there may be possibility the original licensing basis would be changed, which makes non safety-related structure safety-related. Such a change in regulation requires utility to perform seismic qualification for the existing structure and their facilities. Thus it is meaningful to evaluate seismic margin of the existing non-qualified building structure. In addition, in this paper it is shown that a modification to the structure can enhance their seismic capacity.

  • PDF

노후 콘크리트 구조물의 실용적 유지관리를 위한 콘크리트 구조물 안전진단 지침 분석 (Analysis of Safety Evaluation Guidelines for Practical Maintenance of Existing Concrete Structures)

  • 이주형;조재열
    • 토지주택연구
    • /
    • 제11권3호
    • /
    • pp.83-92
    • /
    • 2020
  • In South Korea, problems caused by material deterioration of time-worn concrete structures have been increased recently. Because severe material deterioration could damage the structure's safety, it's important to evaluate the old structure's condition and structural capacity regularly to keep its proper performance. The safety evaluation of concrete structures has been initiated and performed periodically since 1995 according to a guideline in accordance with a law in Korea. The guideline prescribes the evaluation types, intervals and methods of the target structure. A lot of cost and labor have been invested every year to carry out the regular safety evaluation. However, it's not clear that the current manual could inspect the old structure's condition and assess the structural capacity precisely. Thus, the verification study initiated to figure out the Korean safety evaluation manual's practicalness. First, the Korean manual was analyzed and then compared with that of other countries for concrete bridges which are representative concrete structure. After that, the previously written evaluation reports were collected and analyzed to find out how the safety evaluation has been carried out. Based on the study results, the parts requiring verification of the manual were drawn. A research program is in progress in order to verify the parts by performing tests with actual structural members from decommissioned concrete bridges.

구조체의 매설깊이에 따른 전위상승 (Potential Ruse as a function of the Buried Depth for Structure)

  • 길형준;김동욱;김동우;이기연;김향곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 전기설비
    • /
    • pp.27-28
    • /
    • 2006
  • This paper deals with an approach to the reduction of potential rise according to the buried depth of structure. In order to analyze the surface potential rise of structure, an electrolytic tank which simulates the semi-infinite earth has been used. The potential rise has been measured and analyzed for types of structure using an electrolytic tank experimental apparatus in real time. The structure models were designed through reducing real buildings and fabricated with two types on a scale of one-one hundred sixty When a test current flowed through structure models, the potential rise of outline frame type(structure model A) was more high than that of electric cage type(structure model B). The distributions of surface potential rise are dependent on the buried depth of structure model.

  • PDF

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

수계산과 해석을 이용한 핸드링구 내구성 평가 방법 고찰 (Durability Evaluation Method of Handling Structure using Hand Calculation and Simulation)

  • 조성민;방효중;강병익
    • 한국기계가공학회지
    • /
    • 제18권4호
    • /
    • pp.1-9
    • /
    • 2019
  • Most product structural components are assembled by various members and castings except casting products. In such cases, a particular structure is required to move and fix each component. In particular, the safety uncertainty of heavy product assemblies can be linked to large accidents. Thus, the safety design and evaluation of additional structures have become more important. In the field and factories, these additional structures are called handling structures, which are designed and manufactured. As the types of products produced become more diverse, the design and manufacture of a handling structure are also diversified. The results of each evaluation should be derived. We develop a logical design and evaluation method, which was previously designed based on empirical data, for the handling structure.

지게차 충돌 위치 및 보관물류 분포에 따른 선반구조물의 거동특성분석 (Behavioral Characteristics Investigation of Rack Structure Depending on Forklift Impact Scenarios and Storage Distributions)

  • 옥승용;권오용;백신원
    • 한국안전학회지
    • /
    • 제28권6호
    • /
    • pp.49-56
    • /
    • 2013
  • The statistics of recent accidents in warehouses show that a heavy toll of lives were produced by various accidents, e.g. collision, overturn, fall, slip, exposure to harmful substances or environments, etc. Of significant concern amongst them is the collision, especially the collision between forklift and storage rack structure. Accordingly, this study focuses on behavioral characteristics of rack structure subjected to dynamic impact loading of a forklift. For this purpose, time-domain response analysis has been performed on a standard 2-bay six-story rack structure consisting of columns, beams and bracing members with perforated open section. In order to investigate the most critical scenario, the impact loads are applied in both down-aisle and cross-aisle directions, and the impact locations are also varied along the shelves of the palettes. In order to deal with storage distributions, three types of rack structures are further taken into account: original empty rack structure with no storage, half-loaded rack structure and fully-loaded rack structure. The numerical simulation results demonstrate that the dynamic characteristics of the rack structure are significantly dependent on the distribution of the storage goods and its natural period varies from 0.24sec to 1.06sec, approximately 4.4 times. Further, the parametric studies show that the forklift impact is most critical to the safety of the rack structure when it collides either at the base or at the top of the rack structure.

교량시설물 안전관리 네트워크 구축을 위한 기존 시스템 연계방안 연구 (Connection method on pre-installed bridge monitoring system for bridge structure safety network)

  • 박기태;이우상;주봉철;황윤국
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.469-472
    • /
    • 2008
  • In general, structures in service gradually lose original performance according to time due to initial defects in design and construction, or exposure to unfavorable external conditions such as repeated loading or deteriorating environment, and in extreme cases, may collapse in large disaster. Therefore, in order to maintain the serviceability of structures at optimal level, advanced structure measuring system which can inform optimal time point and method of maintenance is required in addition to accurate prediction of residual life the structure by periodic inspection. To guarantee the safety level of bridge structure and to prevent from disaster, the integration of safety network for bridge structures are needed. Therefore in this study, to enhance the effectiveness of safety network for bridge, the connection methodologies between safety network and pre-installed bridge monitoring system are investigated.

  • PDF

QFD를 활용한 안전기능 전개에 관한 연구 (A Study of Safety Function Deployment for Using QFD)

  • 김건호;김윤성;권상면;이강복;박주식;강경식
    • 대한안전경영과학회지
    • /
    • 제6권1호
    • /
    • pp.25-35
    • /
    • 2004
  • We achieved a Quantitative economic growth through rapid developed in 1970' and 1980'. It was confronted after IMF crisis that we needed to improve the past economic policy and the industrial structure. In line of that, the problem of the industrial structure like huge accidents of 1990' converted the recognition of safety. And to improve the conversion, the research of a safety management was needed. In this paper, we thought 4M1E(Man, Machine, Method, Material, Environment) as the cause of accident using the principal of process, assuming that output is accident. Applying 4M1E to the structure of QFD(Quality Function Deployment), we propose the safety function deployment, which has the flow line as followed; demand safety, safety characteristic, direct cause, 4M1E and safety management.

동시 출현 기반 키워드 네트워크 기법을 이용한 이동식 사다리 추락 재해 위험 요인 연관 구조 모델링 (Correlational Structure Modelling for Fall Accident Risk Factors of Portable Ladders Using Co-occurrence Keyword Networks)

  • 황종문;신성우
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.50-59
    • /
    • 2021
  • The main purpose of accident analysis is to identify the causal factors and the mechanisms of those factors leading to the accident. However, current accident analysis techniques focus only on finding the factors related to the accident without providing more insightful results, such as structures or mechanisms. For this reason, preventive actions for safety management are concentrated on the elimination of causal factors rather than blocking the connection or chain of accident processes. This greatly reduces the effectiveness of safety management in practice. In the present study, a technique to model the correlational structure of accident risk factors is proposed by using the co-occurrence keyword network analysis technique. To investigate the effectiveness of the proposed technique, a case study involving a portable ladder fall accident is conducted. The results indicate that the proposed technique can construct the correlational structure model of the risk factors of a portable ladder fall accident. This proves the effectiveness of the proposed technique in modeling the correlational structure of accident risk factors.

시스템 구성품의 위험 심각도를 반영한 안전중시 시스템의 설계 모듈화에 관한 연구 (On the Development of Modularized Structures for Safety-Critical Systems by Analyzing Components Failure)

  • 김영민;이재천
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.11-19
    • /
    • 2014
  • Modern systems development becomes more and more complicated due to the need on the ever-increasing capability of the systems. In addition to the complexity issue, safety concern is also increasing since the malfunctions of the systems under development may result in the accidents in both the test and evaluation phase and the operation phase. Those accidents can cause disastrous damages if explosiveness gets involved therein such as in weapon systems development. The subject of this paper is on how to incorporate safety requirements in the design of safety-critical systems. As an approach, a useful system structure using the method of design structure matrix (DSM) is studied while reflecting the need on systems safety. Specifically, the effects of system components failure are analyzed and numerically modeled first. Also, the system components are identified and their interfaces are represented using a component DSM. Combining the results of the failure analysis and the component DSM leads to a modified DSM. By rearranging the resultant DSM, a modular structure is derived with safety requirements incorporated. As a case study, application of the approach is also discussed in the development of a military UAV plane.