• Title/Summary/Keyword: Structure Learning

Search Result 2,210, Processing Time 0.026 seconds

The study on the Algorithm for Desing of Fuzzy Logic Controller Using Neural Network (신경회로망을 이용한 퍼지제어기 설계 알고리즘에 관한 연구)

  • 채명기;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.243-248
    • /
    • 1996
  • In this paper, a general neural-network-based connectionist model, called Fuzzy Neural Network(FNN), is proposed for the realization of a fuzzy logic control system. The proposed FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such FNN can be constructed from training examples by learning rule, and the connectionist structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Computer simulation examples will be presented to illustrate the performance and applicability of the proposed FNN, and their associated learning algorithms.

  • PDF

Improved Neural Network-Based Self-Tuning fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • 김상민;한우용;이창구
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.691-696
    • /
    • 2002
  • This paper presents a neural network based self-tuning fuzzy PID control scheme with variable learning rate for induction motor speed control. When induction motor is continuously used long time, its electrical and mechanical Parameters will change, which degrade the Performance of PID controller considerably. This Paper re-analyzes the fuzzy controller as conventional PID controller structure, introduces a single neuron with a back-propagation learning algorithm to tune the control parameters, and proposes a variable learning rate to improve the control performance. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink and the experiment using dSPACE(DS1102) board are performed to verify the effectiveness of the proposed scheme.

The Relation with Shared Cognition for Knowledge Worker and Team Effectiveness (지식근로자의 공유인지와 팀 효과성의 관계)

  • Lim, HuiJeong;Kang, HyeRyeon
    • Knowledge Management Research
    • /
    • v.6 no.2
    • /
    • pp.67-90
    • /
    • 2005
  • Attention has been focused recently on the concept of shared cognition which encompasses the notion that effective team members hold knowledge that is overlapping and complementary with teammates. This shared cognition is expected to improve team effectiveness. In contrast to the continued efforts in developing theoretical approach of shared cognition, empirical studies are meager. Thus, we conducted an empirical study to investigate the role of shared cognition on team effectiveness. This study classifies shared cognition into two types, team mental model and transactive memory system, by shared meaning. A total of 121 new product development teams in the IT industry were surveyed for the data collection. The results of analysis can be summarized as follows: first, team mental model has a positive influence on team performance, team innovative behavior and team learning effect. And the relation with team mental model and team performance is moderated by the similarity of knowledge structure among the expert. Second, transactive memory system has a positive influence on team performance, team innovative behavior and team learning effect.

  • PDF

Character Recognition using Regional Structure

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • With the advent of the fourth industry, the need for office automation with automatic character recognition capabilities is increasing day by day. Therefore, in this paper, we study a character recognition algorithm that effectively recognizes a new experimental data character by using learning data characters. The proposed algorithm computes the degree of similarity that the structural regions of learning data characters match the corresponding regions of the experimental data character. It has been confirmed that satisfactory results can be obtained by selecting the learning data character with the highest degree of similarity in the matching process as the final recognition result for a given experimental data character.

Multi-task learning with contextual hierarchical attention for Korean coreference resolution

  • Cheoneum Park
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.93-104
    • /
    • 2023
  • Coreference resolution is a task in discourse analysis that links several headwords used in any document object. We suggest pointer networks-based coreference resolution for Korean using multi-task learning (MTL) with an attention mechanism for a hierarchical structure. As Korean is a head-final language, the head can easily be found. Our model learns the distribution by referring to the same entity position and utilizes a pointer network to conduct coreference resolution depending on the input headword. As the input is a document, the input sequence is very long. Thus, the core idea is to learn the word- and sentence-level distributions in parallel with MTL, while using a shared representation to address the long sequence problem. The suggested technique is used to generate word representations for Korean based on contextual information using pre-trained language models for Korean. In the same experimental conditions, our model performed roughly 1.8% better on CoNLL F1 than previous research without hierarchical structure.

Fall detection algorithm based on deep learning (딥러닝 기반 낙상 인식 알고리듬)

  • Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.552-554
    • /
    • 2021
  • We propose a fall recognition system using a deep learning algorithm using motion data acquired by a Doppler radar sensor. Among the deep learning algorithms, an RNN that has an advantage in time series data is used to recognize falls. The fall data of the Doppler radar sensor has a temporal characteristic as time series data, and the structure of the RNN is sequenced because the result only determines whether a fall or not It is designed in a structure that outputs a fixed size to the input.

  • PDF

Electromyography Pattern Recognition and Classification using Circular Structure Algorithm (원형 구조 알고리즘을 이용한 근전도 패턴 인식 및 분류)

  • Choi, Yuna;Sung, Minchang;Lee, Seulah;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.62-69
    • /
    • 2020
  • This paper proposes a pattern recognition and classification algorithm based on a circular structure that can reflect the characteristics of the sEMG (surface electromyogram) signal measured in the arm without putting the placement limitation of electrodes. In order to recognize the same pattern at all times despite the electrode locations, the data acquisition of the circular structure is proposed so that all sEMG channels can be connected to one another. For the performance verification of the sEMG pattern recognition and classification using the developed algorithm, several experiments are conducted. First, although there are no differences in the sEMG signals themselves, the similar patterns are much better identified in the case of the circular structure algorithm than that of conventional linear ones. Second, a comparative analysis is shown with the supervised learning schemes such as MLP, CNN, and LSTM. In the results, the classification recognition accuracy of the circular structure is above 98% in all postures. It is much higher than the results obtained when the linear structure is used. The recognition difference between the circular and linear structures was the biggest with about 4% when the MLP network was used.

A Study on the Cognition of Structure and Contents of Elementary 3rd and 4th Grade Science Textbook in the 7th curriculum (제7차 교육과정에 따른 초등학교 3, 4학년 과학 교과서의 체제와 내용에 대한 인식 조사)

  • 김정애;노석구
    • Journal of Korean Elementary Science Education
    • /
    • v.22 no.1
    • /
    • pp.37-50
    • /
    • 2003
  • The purpose of this study was to develop the quality of the textbook and to find out reasonable selection and structure by examining and analyzing the cognition of teacher and students on the structure and contents of elementary science textbook in the 7th curriculum. The findings of this study were as follows: First, as a result of the students’ cognition, their interest level of the learning contents was high and the degree of the difficulty of the learning contents was low on the whole. Second, as a result of the teachers’ cognition of contents of the textbook, teachers who taught third graders understood that the third graders have relatively much contents to be studied and the level of the contents of the textbook was high. On the other hand, fourth graders’ teachers recognized that contents to be studied and the level of the contents were appropriate. And they understood that there were much work to be studied in the units which were difficult and there were difference between contents to be studied and the degree of the difficulty in some units such as life or the earth fold. Third, as a result of the teachers' cognition of structure of the textbook. teachers were very affirmative to reduce school hours. They understood that current numbers and scale of the unit were appropriate. Teachers were satisfied with the structure of elementary science textbook in the 7th curriculum on the whole.

  • PDF

Evolutionary Learning Algorithm fo r Projection Neural NEtworks (투영신경회로망의 훈련을 위한 진화학습기법)

  • 황민웅;최진영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.74-81
    • /
    • 1997
  • This paper proposes an evolutionary learning algorithm to discipline the projection neural nctworks (PNNs) with special type of hidden nodes which can activate radial basis functions as well as sigmoid functions. The proposed algorithm not only trains the parameters and the connection weights hut also c~ptimizes the network structure. Through the structure optimization, the number of hidden node:; necessary to represent a given target function is determined and the role of each hidden node is decided whether it activates a radial basis function or a sigmoid function. To apply the algorithm, PNN is realized by a self-organizing genotype representation with a linked list data structure. Simulations show that the algorithm can build the PNN with less hidden nodes than thc existing learning algorithm using error hack propagation(EE3P) and network growing strategy.

  • PDF

Development of Eye-Tracking System Using Dual Machine Learning Structure (이중 기계학습 구조를 이용한 안구이동추적 기술개발)

  • Gang, Gyeong Woo;Min, Chul Hong;Kim, Tae Seon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1111-1116
    • /
    • 2017
  • In this paper, we developed bio-signal based eye tracking system using electrooculogram (EOG) and electromyogram (EMG) which measured simultaneously from same electrodes. In this system, eye gazing position can be estimated using EOG signal and we can use EMG signal at the same time for additional command control interface. For EOG signal processing, PLA algorithms are applied to reduce processing complexity but still it can guarantee less than 0.2 seconds of reaction delay time. Also, we developed dual machine learning structure and it showed robust and enhanced tracking performances. Compare to conventional EOG based eye tracking system, developed system requires relatively light hardware system specification with only two skin contact electrodes on both sides of temples and it has advantages on application to mobile equipments or wearable devices. Developed system can provide a different UX for consumers and especially it would be helpful to disabled persons with application to orthotics for those of quadriplegia or communication tools for those of intellectual disabilities.