• Title/Summary/Keyword: Structural strain method

Search Result 879, Processing Time 0.025 seconds

Probability Analysis of Plane Strain Element using Boundary Element Method (경계요소법을 이용한 평면변형율요소의 확률해석)

  • Jeon, Jeong-Bae;Yoon, Seong-Soo;Park, Jin-Seon;Lee, Hyeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.

Strain-smoothed polygonal finite elements

  • Hoontae Jung;Chaemin Lee;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.311-324
    • /
    • 2023
  • Herein, we present effective polygonal finite elements to which the strain-smoothed element (SSE) method is applied. Recently, the SSE method has been developed for conventional triangular and quadrilateral finite elements; furthermore, it has been shown to improve the performance of finite elements. Polygonal elements enable various applications through flexible mesh handling; however, further development is still required to use them more effectively in engineering practice. In this study, piecewise linear shape functions are adopted, the SSE method is applied through the triangulation of polygonal elements, and a smoothed strain field is constructed within the element. The strain-smoothed polygonal elements pass basic tests and show improved convergence behaviors in various numerical problems.

Damage Detection in Beam Structures using Harmony Search Method and Frequency Response (보 구조물의 주파수응답을 이용한 화음탐색법 기반 손상검색)

  • Lee, So-Young;Park, Jae-Hyung;Yi, Jin-Hak;Ryu, Yeon-Sun;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.139-144
    • /
    • 2008
  • In this study, damage detection method using harmony search method and frequency response is proposed. In order to verify this method, the following approaches are implemented. Firstly, damage detection method using harmony search is developed. To detect damage, objective function that minimize difference with natural frequency and modal strain energy from undamaged and damaged model is used. Secondly, finite element model for beam structure is created. And damage scenario is determined. Lastly, damage detection is performed by proposed method and utility of proposed method is verified.

  • PDF

Column Shortening Analysis of Composite Columns by Age-adjusted Effective Modulus Method (재령보정유효탄성계수법에 의한 합성기둥 축소량 해석)

  • Kim Han-Soo;Kim Jae-Keun;Kim Do-Kyoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.490-495
    • /
    • 2006
  • The analysis method proposed by PCA is widely used in calculating the column shortening of reinforced and composite columns of a tall building. However, residual creep factor which relates creep strain of reinforced concrete to creep strain of plain concrete is based on Rate of Creep Method (RCM) which has theoretical defects and is considered obsolete. In this paper, a new equation for the residual creep factor based on Age-adjusted Effective Modulus Method (AEMM) which is considered exact and better than RCM is proposed. The residual creep factor by RCM is found to be higher than one by AEMM, which means current PCA method overestimates the shortening of a reinforced concrete column. By using the residual creep factor by AEMM, more exact column shortening of a tall building can be obtainable with a simple modification to PCA method.

  • PDF

Identification of moving train loads on railway bridge based on strain monitoring

  • Wang, Hao;Zhu, Qingxin;Li, Jian;Mao, Jianxiao;Hu, Suoting;Zhao, Xinxin
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.263-278
    • /
    • 2019
  • Moving train load parameters, including train speed, axle spacing, gross train weight and axle weights, are identified based on strain-monitoring data. In this paper, according to influence line theory, the classic moving force identification method is enhanced to handle time-varying velocity of the train. First, the moments that the axles move through a set of fixed points are identified from a series of pulses extracted from the second derivative of the structural strain response. Subsequently, the train speed and axle spacing are identified. In addition, based on the fact that the integral area of the structural strain response is a constant under a unit force at a unit speed, the gross train weight can be obtained from the integral area of the measured strain response. Meanwhile, the corrected second derivative peak values, in which the effect of time-varying velocity is eliminated, are selected to distribute the gross train weight. Hence the axle weights could be identified. Afterwards, numerical simulations are employed to verify the proposed method and investigate the effect of the sampling frequency on the identification accuracy. Eventually, the method is verified using the real-time strain data of a continuous steel truss railway bridge. Results show that train speed, axle spacing and gross train weight can be accurately identified in the time domain. However, only the approximate values of the axle weights could be obtained with the updated method. The identified results can provide reliable reference for determining fatigue deterioration and predicting the remaining service life of railway bridges.

A Study on Residual Compression Behavior of Structural Fiber Reinforced Concrete Exposed to Moderate Temperature Using Digital Image Correlation

  • Srikar, G.;Anand, G.;Prakash, S. Suriya
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.75-85
    • /
    • 2016
  • Fire ranks high among the potential risks faced by most buildings and structures. A full understanding of temperature effects on fiber reinforced concrete is still lacking. This investigation focuses on the study of the residual compressive strength, stress strain behavior and surface cracking of structural polypropylene fiber-reinforced concrete subjected to temperatures up to $300^{\circ}C$. A total of 48 cubes was cast with different fiber dosages and tested under compression after exposing to different temperatures. Concrete cubes with varying macro (structural) fiber dosages were exposed to different temperatures and tested to observe the stress-strain behavior. Digital image correlation, an advanced non-contacting method was used for measuring the strain. Trends in the relative residual strengths with respect to different fiber dosages indicate an improvement up to 15 % in the ultimate compressive strengths at all exposure temperatures. The stress-strain curves show an improvement in post peak behavior with increasing fiber dosage at all exposure temperatures considered in this study.

Structural Dynamics Modification with Embossing: A Comparison Study Between Neural Network and Modal Dynamic Strain Energy (엠보스를 이용한 동특성 변경 : 신경망과 스트레인 에너지를 이용한 방법의 비교 연구)

  • Kim, Chong-Uck;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.219-222
    • /
    • 2004
  • This research is about SDM (Structural Dynamics Modification) technique using embosses. SDM using embosses do not need to add additional mass element ana model of embosses and resulting huge calculation for getting analytical solution of an embossed structure. The object of this research is to suggest a method to guide placing embossment in a structure to raise its natural frequencies. Two methods to optimize model with embossing are suggested, indepuldently. The former is response surface analysis by neural network. And the latter is an indirect method using modal dynamic strain energy.

  • PDF

Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory

  • Messai, Abderraouf;Fortas, Lahcene;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.461-479
    • /
    • 2022
  • A finite element method analysis framework is introduced for the free vibration analyses of functionally graded porous beam structures by employing two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element. A comprehensive parametric study is carried out, with a particular focus on the effects of various structural parameters such as the dispersion patterns of GPL reinforcements and porosity, thickness ratio, boundary conditions, nonlocal scale parameter and strain gradient parameters. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams.

Nonlinear Analysis Method by the Arc Length Method (Arc Length Method에 의한 비선형 문제의 해법)

  • 이대희;최종근
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.107-114
    • /
    • 1996
  • The performance for the algorithm of the arc length method has been examined in terms of the choice of the tangential stiffness matrix through the analysis for the snap buckling phenomenon of the arch beam. The curved beam element with 2 nodes including shear effect has been formed by strain element technique and then it has been used in this nonlinear analysis. Snap-through characteristics has been examined with respect to the ratios of the arch beam length to hight.

  • PDF

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF